软件测试/人工智能|Python数据可视化神器pyecharts教程(一)

简介: 软件测试/人工智能|Python数据可视化神器pyecharts教程(一)

前言

在很多时候,枯燥的数字并不能很直观的展示地域的差别,比如一个企业,想要分析产品在国内的销售情况,报表可能并不能最直接的展示差异,而一个结合地图的展示,就会直观得多,更便于大家去看到差距,更利于决策。

当然,除了做商业决策,将数据与地图结合,也更便于我们展示诸如人口密度,经济总量等数据,总之,数据可视化是极大地方便了我们的数据分析和评估的。本文就来介绍一下使用Python的数据可视化神器pyecharts来绘制带地图的数据分析图。

环境准备

在使用pyecharts绘制图像之前,我们需要先准备好pyecharts的环境,安装pyecharts非常简单,我们直接使用pip命令安装即可,命令如下:

pip install pyecharts

pyecharts中,每一种图都有自己对应的类,我们在绘制时,需要先进行导入,在绘制地图之前,我们需要先导入Map类。

因为我们目前没有真实数据,所以我们可以使用Faker库来生成一些假数据,我们可以使用pip命令来安装Faker库,命令如下:

pip install faker

我们在绘制之前,需要导入的包如下:

from pyecharts import options as opts
from pyecharts.charts import Map
from pyecharts.faker import Faker

add函数

在pyecharts中,每一种类型的图都有对应的add函数,现在我们来分析一下Map类的add函数。

def add(
        self,
        series_name: str,  # 系列名称
        data_pair: types.Sequence[types.Union[types.Sequence, opts.MapItem, dict]],  # 数据对,包含地理位置和数值
        maptype: str = "china",  # 地图类型,默认为中国地图
        *,
        is_roam: bool = True,  # 是否开启鼠标缩放和平移漫游,默认为开启
        center: types.Optional[types.Sequence] = None,  # 地图中心点坐标,默认为None
        aspect_scale: types.Numeric = 0.75,  # 地图长宽比,默认为0.75
        bounding_coords: types.Optional[types.Sequence[types.Numeric]] = None,  # 地图的最大最小经纬度范围,默认为None
        min_scale_limit: types.Optional[types.Numeric] = None,  # 最小的缩放比例限制,默认为None
        max_scale_limit: types.Optional[types.Numeric] = None,  # 最大的缩放比例限制,默认为None
        name_property: str = "name",  # 地图数据项中地理位置的属性名称,默认为"name"
        selected_mode: types.Union[bool, str] = False,  # 选中模式,默认为False,可选值为"single"、"multiple"
        zoom: types.Optional[types.Numeric] = 1,  # 地图缩放级别,默认为1
        name_map: types.Optional[dict] = None,  # 地理位置名称的映射关系,默认为None
        symbol: types.Optional[str] = None,  # 地图标记的图形,默认为None,可选值为"circle"、"rect"、"roundRect"等
        map_value_calculation: str = "sum",  # 地图数值的计算方式,默认为"sum",可选值为"average"、"max"、"min"等
        is_map_symbol_show: bool = True,  # 是否显示地图标记,默认为True
        z_level: types.Numeric = 0,  # 图形的层级,默认为0
        z: types.Numeric = 2,  # 图形的z值,默认为2
        pos_left: types.Optional[types.Union[str, types.Numeric]] = None,  # 图形左上角的位置,默认为None
        pos_top: types.Optional[types.Union[str, types.Numeric]] = None,  # 图形左上角的位置,默认为None
        pos_right: types.Optional[types.Union[str, types.Numeric]] = None,  # 图形右下角的位置,默认为None
        pos_bottom: types.Optional[types.Union[str, types.Numeric]] = None,  # 图形右下角的位置,默认为None
        geo_index: types.Optional[types.Numeric] = None,  # 地理位置的索引,默认为None
        series_layout_by: str = "column",  # 系列的布局方式,默认为"column",可选值为"row"
        dataset_index: types.Optional[types.Numeric] = 0,  # 数据集的索引,默认为0
        layout_center: types.Optional[types.Sequence[str]] = None,  # 图形布局的中心点,默认为None
        layout_size: types.Union[str, types.Numeric] = None,  # 图形布局的大小,默认为None
        label_opts: types.Label = opts.LabelOpts(),  # 标签的配置项,默认为LabelOpts()
        tooltip_opts: types.Tooltip = None,  # 提示框的配置项,默认为None
        itemstyle_opts: types.ItemStyle = None,  # 图形样式的配置项,默认为None
        emphasis_label_opts: types.Label = None,  # 强调状态下标签的配置项,默认为None
        emphasis_itemstyle_opts: types.ItemStyle = None,  # 强调状态下图形样式的配置项,默认为None
    )

绘制省市地图

我们要详细分析省市的数据,我们可以只绘制某个省的地图,例如,我们要绘制江西省的地图,设置maptype="江西"即可,代码如下:

from pyecharts import options as opts
from pyecharts.charts import Map
from pyecharts.faker import Faker

c = (
    Map()  # 创建地图对象
    .add("煌上煌", [list(z) for z in zip(Faker.guangdong_city, Faker.values())], maptype="江西")  # 添加数据,地区选择江西(也可以选择其他省市)
    .set_global_opts(
        title_opts=opts.TitleOpts(title="江西地图"),  # 设置标题为"江西地图"
        visualmap_opts=opts.VisualMapOpts()  # 设置可视化地图的配置项
    )
)

# 渲染图表
c.render("江西地图.html")  # 将图表渲染为HTML文件

绘制的图像在浏览器打开,如下:

image.png

中国地图

我们设置maptype="china"就可以绘制只带省级行政区名的中国地图,设置maptype="china-cities"即可绘制带城市的中国地图,代码如下:

from pyecharts import options as opts
from pyecharts.charts import Map
from pyecharts.faker import Faker

c = (
    Map()  # 创建地图对象
    .add(
        "比亚迪",
        [list(z) for z in zip(Faker.guangdong_city, Faker.values())], maptype="china-cities",  # 添加数据,商家A在中国各个城市的销售额,使用带有城市的中国地图
        label_opts=opts.LabelOpts(is_show=False),  # 设置标签的配置项,不显示标签
    )
    .set_global_opts(
        title_opts=opts.TitleOpts(title="中国城市图"),  # 设置标题为"中国地图(带城市)"
        visualmap_opts=opts.VisualMapOpts(),  # 设置可视化地图的配置项
    )
)

# 渲染图表
c.render("中国城市图.html")  # 将图表渲染为HTML文件

总结

本文主要介绍了如何使用pyecharts绘制带地图信息的数据分析图,地图可视化是一种强大的工具,能够直观地展示产品销售数据。希望本文能够帮到大家!

相关文章
|
15天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
74 4
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
1月前
|
数据可视化 DataX Python
Seaborn 教程-绘图函数
Seaborn 教程-绘图函数
73 8
|
1月前
Seaborn 教程-主题(Theme)
Seaborn 教程-主题(Theme)
129 7
|
1月前
|
Python
Seaborn 教程-模板(Context)
Seaborn 教程-模板(Context)
52 4
|
1月前
|
数据可视化 Python
Seaborn 教程
Seaborn 教程
52 5
吊打 Pyecharts,这个新 Python 绘图库竟然这么漂亮!(二)
吊打 Pyecharts,这个新 Python 绘图库竟然这么漂亮!(二)
吊打 Pyecharts,这个新 Python 绘图库竟然这么漂亮!(二)
|
1月前
|
人工智能 数据可视化 数据挖掘
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!
|
1月前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
1月前
|
Unix Linux 程序员
[oeasy]python053_学编程为什么从hello_world_开始
视频介绍了“Hello World”程序的由来及其在编程中的重要性。从贝尔实验室诞生的Unix系统和C语言说起,讲述了“Hello World”作为经典示例的起源和流传过程。文章还探讨了C语言对其他编程语言的影响,以及它在系统编程中的地位。最后总结了“Hello World”、print、小括号和双引号等编程概念的来源。
116 80
|
23天前
|
Python
[oeasy]python055_python编程_容易出现的问题_函数名的重新赋值_print_int
本文介绍了Python编程中容易出现的问题,特别是函数名、类名和模块名的重新赋值。通过具体示例展示了将内建函数(如`print`、`int`、`max`)或模块名(如`os`)重新赋值为其他类型后,会导致原有功能失效。例如,将`print`赋值为整数后,无法再用其输出内容;将`int`赋值为整数后,无法再进行类型转换。重新赋值后,这些名称失去了原有的功能,可能导致程序错误。总结指出,已有的函数名、类名和模块名不适合覆盖赋新值,否则会失去原有功能。如果需要使用类似的变量名,建议采用其他命名方式以避免冲突。
40 14

热门文章

最新文章