谈谈MYSQL索引

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 谈谈MYSQL索引

基本介绍

索引是帮助MySQL高效获取数据的数据结构,主要是用来提高数据检索的效率,降低数据库的IO成本,同时通过索引列对数据进行排序,降低数据排序的成本,也能降低了CPU的消耗。

通俗来说, 索引就相当于一本书的目录, 可以根据页码快速查找到指定的内容, 目的就是加快数据库的查询速度,但这也就意味着书中如果要增加一个章节,修改目录是比较麻烦的,使用索引适用于经常查询很少修改的业务

在 MySQL 中,通常有以下两种方式访问数据库表的行数据:

1) 顺序访问

  • 顺序访问是在表中实行全表扫描,从头到尾逐行遍历,直到在无序的行数据中找到符合条件的目标数据。
  • 顺序访问实现比较简单,但是当表中有大量数据的时候,效率非常低下。例如,在几千万条数据中查找少量的数据时,使用顺序访问方式将会遍历所有的数据,花费大量的时间,显然会影响数据库的处理性能。

2) 索引访问

  • 索引访问是通过遍历索引来直接访问表中记录行的方式。
  • 使用这种方式的前提是对表建立一个索引,在列上创建了索引之后,查找数据时可以直接根据该列上的索引找到对应记录行的位置,从而快捷地查找到数据。索引存储了指定列数据值的指针,根据指定的排序顺序对这些指针排序。

注意: 建立索引后, 查询速度不一定会变快,例如, 你在teacher表中建立了关于id的索引, 如果你按照name查询, 那么查询速度也不会变快,查询得用到你建立的索引

优缺点

优点:

  • 创建索引可以大幅提高系统性能,帮助用户提高查询的速度;
  • 可以加速表与表之间的链接;
  • 降低查询中分组和排序的时间。

缺点:

  • 索引的存储需要占用磁盘空间;
  • 当数据的量非常巨大时,索引的创建和维护所耗费的时间也是相当大的;
  • 当每次执行create、update、delete操作时,索引也需要动态维护,降低了数据的维护速度。

空间换时间

索引的底层数据结构

B树

B树树就是B-树,它是一种平衡的多叉树,不是B减树,而是B杠树,中文通常称为B树,英语称为B-tree。

人们可能会以为B-树是一种树,而B树又是一种一种树。而事实上是,B-tree就是指的B树。

B 树的结构如下图所示:

B树的主要特点有:

  • B树的节点中存储着多个元素, 每个内节点有多个分叉.
  • 在所有的节点中都存储数据
  • 父节点当中的元素不会出现在子节点中.
  • 所有的叶子节点都位于同一层, 叶子节点具有相同的深度, 叶子节点之间没有指针连接.

上面那张图所表示的 B 树就是一棵 3 阶的 B 树。我们可以看下磁盘块 2,里面的关键字为(8,12),它 有 3 个孩子 (3,5),(9,10) 和 (13,15),你能看到 (3,5) 小于 8,(9,10) 在 8 和 12 之间,而 (13,15)大于 12,刚好符合刚才我们给出的特征。 然后我们来看下如何用 B 树进行查找。假设我们想要 查找的关键字是 9 ,那么步骤可以分为以下几步:

  • 我们与根节点的关键字 (17,35)进行比较,9 小于 17 那么得到指针 P1;
  • 按照指针 P1 找到磁盘块 2,关键字为(8,12),因为 9 在 8 和 12 之间,所以我们得到指针 P2;
  • 按照指针 P2 找到磁盘块 6,关键字为(9,10),然后我们找到了关键字 9。

B 树相比于平衡二叉树来说磁盘 I/O 操作要少 , 在数据查询中比平衡二叉树效率要高。所以 只要树的高度足够低,IO次数足够少,就可以提高查询性能 。

B+树

B+树是B树的改造版, 他与B树的不同点有:

  • 所有的data在叶子节点出现, 内部节点不再存储data, 只存储key
  • 叶子节点之间使用双向指针连接, 最底层的叶子节点形成了一个双向有序链表, 方便进行范围查询.

B+树的查找与B树不同,当索引部分某个节点的关键字与所查的关键字相等时,并不停止查找,应继续沿着这个关键字左边的指针向下,一直查到该关键字所在的叶子节点为止。

B+树可以保证精确查询和范围查询的快速查找,MySQL的innodb存储引擎底层就是B+树.

为什么InnoDB选择B+树而不是B树:

   1、B+树的磁盘读取代价低, B树每个节点都有data,B+树只有叶子节才有,假设每个节点大小16KB,那么B+树比B树能存储更多的关键字,一次性读入内存的关键字的内存也会更多,B+树的高度也会比B树低,磁盘IO次数会更少。

   2、B+树对范围查询更友好,方便遍历,B树叶子节点没有链接,而B+树叶子节点通过双向指针链接,可以很方便的进行范围查询,比如where条件中 age >= 3 and age < 20,那么当找到3时就可以顺着指针找到20,而B树是不可以的。

   3、B+树查询效率稳定性更好, 在B+树中,由于分支节点并不是最终指向文件内容的节点,分支节点只是叶子节点的索引,所以对于任意关键字的查找都必须从根节点走到分支节点,所有关键字查询路径长度相同,每个数据查询效率相当。而对于B树而言,其分支节点上也保存有数据,对于每一个数据的查询所走的路径长度是不一样的,效率也不一样,B树稳定性不如B+树好


相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
25天前
|
存储 关系型数据库 MySQL
阿里面试:为什么要索引?什么是MySQL索引?底层结构是什么?
尼恩是一位资深架构师,他在自己的读者交流群中分享了关于MySQL索引的重要知识点。索引是帮助MySQL高效获取数据的数据结构,主要作用包括显著提升查询速度、降低磁盘I/O次数、优化排序与分组操作以及提升复杂查询的性能。MySQL支持多种索引类型,如主键索引、唯一索引、普通索引、全文索引和空间数据索引。索引的底层数据结构主要是B+树,它能够有效支持范围查询和顺序遍历,同时保持高效的插入、删除和查找性能。尼恩还强调了索引的优缺点,并提供了多个面试题及其解答,帮助读者在面试中脱颖而出。相关资料可在公众号【技术自由圈】获取。
|
1月前
|
存储 NoSQL 关系型数据库
为什么MySQL不使用红黑树做索引
本文详细探讨了MySQL索引机制,解释了为何添加索引能提升查询效率。索引如同数据库的“目录”,在数据量庞大时提高查询速度。文中介绍了常见索引数据结构:哈希表、有序数组和搜索树(包括二叉树、平衡二叉树、红黑树、B-树和B+树)。重点分析了B+树在MyISAM和InnoDB引擎中的应用,并讨论了聚簇索引、非聚簇索引、联合索引及最左前缀原则。最后,还介绍了LSM-Tree在高频写入场景下的优势。通过对比多种数据结构,帮助理解不同场景下的索引选择。
74 6
|
1月前
|
SQL 关系型数据库 MySQL
案例剖析:MySQL唯一索引并发插入导致死锁!
案例剖析:MySQL唯一索引并发插入导致死锁!
案例剖析:MySQL唯一索引并发插入导致死锁!
|
1月前
|
存储 关系型数据库 MySQL
Mysql(4)—数据库索引
数据库索引是用于提高数据检索效率的数据结构,类似于书籍中的索引。它允许用户快速找到数据,而无需扫描整个表。MySQL中的索引可以显著提升查询速度,使数据库操作更加高效。索引的发展经历了从无索引、简单索引到B-树、哈希索引、位图索引、全文索引等多个阶段。
61 3
Mysql(4)—数据库索引
|
16天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第27天】本文深入探讨了MySQL的索引策略和查询性能调优技巧。通过介绍B-Tree索引、哈希索引和全文索引等不同类型,以及如何创建和维护索引,结合实战案例分析查询执行计划,帮助读者掌握提升查询性能的方法。定期优化索引和调整查询语句是提高数据库性能的关键。
82 1
|
27天前
|
存储 关系型数据库 MySQL
如何在MySQL中进行索引的创建和管理?
【10月更文挑战第16天】如何在MySQL中进行索引的创建和管理?
56 1
|
17天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第26天】数据库作为现代应用系统的核心组件,其性能优化至关重要。本文主要探讨MySQL的索引策略与查询性能调优。通过合理创建索引(如B-Tree、复合索引)和优化查询语句(如使用EXPLAIN、优化分页查询),可以显著提升数据库的响应速度和稳定性。实践中还需定期审查慢查询日志,持续优化性能。
47 0
|
1月前
|
监控 关系型数据库 MySQL
MySQL数据表索引命名规范
MySQL数据表索引命名规范
57 1
|
1月前
|
存储 SQL 关系型数据库
mysql中主键索引和联合索引的原理与区别
本文详细介绍了MySQL中的主键索引和联合索引原理及其区别。主键索引按主键值排序,叶节点仅存储数据区,而索引页则存储索引和指向数据域的指针。联合索引由多个字段组成,遵循最左前缀原则,可提高查询效率。文章还探讨了索引扫描原理、索引失效情况及设计原则,并对比了InnoDB与MyISAM存储引擎中聚簇索引和非聚簇索引的特点。对于优化MySQL性能具有参考价值。
|
1月前
|
存储 关系型数据库 MySQL
MySQL中的索引及怎么使用
综上所述,MySQL索引的正确使用是数据库性能调优的关键一环。通过合理设计索引结构,结合业务需求和数据特性,可以有效提升数据库查询响应速度,降低系统资源消耗,从而确保应用的高效运行。
66 1