C# | 上位机开发新手指南(四)校验算法

简介: 校验算法是一种用于验证数据传输过程中是否出现错误或丢失的算法。在数据传输过程中,由于噪声、干扰、传输错误等因素的影响,会导致数据传输过程中出现错误或丢失。为了保证数据传输的准确性,需要在数据传输过程中添加校验码。发送端通过计算数据的校验码并将其附加到数据中一起发送出去,接收端再次计算校验码并将其与接收到的校验码进行比较,如果两者相同,则说明数据传输过程中没有出现错误或丢失。

在这里插入图片描述

上位机开发新手指南(四)校验算法

@[toc]

什么是校验算法?

校验算法是一种用于验证数据传输过程中是否出现错误或丢失的算法。
在数据传输过程中,由于噪声、干扰、传输错误等因素的影响,会导致数据传输过程中出现错误或丢失。
为了保证数据传输的准确性,需要在数据传输过程中添加校验码。发送端通过计算数据的校验码并将其附加到数据中一起发送出去,接收端再次计算校验码并将其与接收到的校验码进行比较,如果两者相同,则说明数据传输过程中没有出现错误或丢失。

校验算法之于上位机开发

学习上位机开发需要学习校验算法,主要是因为在实际的工程应用中,数据传输准确性是非常重要的。如果数据传输出现错误或丢失,将会影响整个系统的正常运行。因此,开发人员需要掌握不同的校验算法,根据实际情况选择合适的校验算法,并在数据传输过程中进行校验,以确保数据传输的准确性。

校验算法

上位机开发中,常用的校验算法有CRC校验和、校验位、LRC校验和、BCC校验等。开发人员需要了解不同校验算法的原理和实现方式,并根据实际需求选择合适的校验算法。下面分别介绍这几种校验算法的原理和示例代码:

CRC校验和

CRC校验和是一种循环冗余校验(Cyclic Redundancy Check)算法,用于验证数据在传输过程中是否出现错误或丢失。CRC校验和主要采用除法的方法对数据进行校验,将数据和一组特定的多项式进行异或操作,最终得到一个校验和值。在接收端,再次对接收到的数据进行CRC校验和计算,如果校验和值与发送端计算的校验和值不同,则说明数据传输过程中出现了错误。

以下是C#中计算CRC校验和的示例代码:

//计算CRC校验和
public static ushort CalcCRC(byte[] data)
{
   
   
    ushort crc = 0xFFFF;
    for (int i = 0; i < data.Length; i++)
    {
   
   
        crc = (ushort)(crc ^ data[i]);
        for (int j = 0; j < 8; j++)
        {
   
   
            if ((crc & 0x0001) != 0)
            {
   
   
                crc = (ushort)((crc >> 1) ^ 0xA001);
            }
            else
            {
   
   
                crc = (ushort)(crc >> 1);
            }
        }
    }
    return crc;
}

校验位

校验位是一种简单的校验算法,通常用于检查数据是否发生了错误或丢失。校验位主要采用位运算的方式对数据进行校验,将数据中每个字节的所有位相加,取结果的二进制补码的低8位作为校验位。在接收端,再次对接收到的数据进行校验,如果校验位值与发送端计算的校验位值不同,则说明数据传输过程中出现了错误。

以下是C#中计算校验位的示例代码:

//计算校验位
public static byte CalcChecksum(byte[] data)
{
   
   
    int sum = 0;
    for (int i = 0; i < data.Length; i++)
    {
   
   
        sum += data[i];
    }
    return (byte)(sum & 0xFF);
}

LRC校验和

LRC校验和(Longitudinal Redundancy Check)是一种字节异或校验算法,主要用于验证数据在传输过程中是否出现错误或丢失。LRC校验和的原理是将数据中每个字节进行异或操作,最终得到一个校验和值。在接收端,再次对接收到的数据进行LRC校验和计算,如果校验和值与发送端计算的校验和值不同,则说明数据传输过程中出现了错误。

以下是C#中计算LRC校验和的示例代码:

//计算LRC校验和
public static byte CalcLRC(byte[] data)
{
   
   
    byte lrc = 0x00;
    for (int i = 0; i < data.Length; i++)
    {
   
   
        lrc ^= data[i];
    }
    return lrc;
}

BCC校验

BCC校验(Block Check Character)是一种字节异或校验算法,主要用于验证数据在传输过程中是否出现错误或丢失。BCC校验的原理是将数据中每个字节进行异或操作,最终得到一个校验和值。在接收端,再次对接收到的数据进行BCC校验计算,如果校验和值与发送端计算的校验和值不同,则说明数据传输过程中出现了错误。

以下是C#中计算BCC校验的示例代码:

//计算BCC校验
public static byte CalcBCC(byte[] data)
{
   
   
    byte bcc = 0x00;
    for (int i = 0; i < data.Length; i++)
    {
   
   
        bcc ^= data[i];
    }
    return (byte)(~bcc);
}
相关文章
|
2月前
|
存储 监控 算法
电脑监控管理中的 C# 哈希表进程资源索引算法
哈希表凭借O(1)查询效率、动态增删性能及低内存开销,适配电脑监控系统对进程资源数据的实时索引需求。通过定制哈希函数与链地址法冲突解决,实现高效进程状态追踪与异常预警。
174 10
|
3月前
|
XML 测试技术 API
利用C#开发ONVIF客户端和集成RTSP播放功能
利用C#开发ONVIF客户端和集成RTSP播放功能
1474 123
|
6月前
|
存储 运维 监控
基于 C# 语言的 Dijkstra 算法在局域网内监控软件件中的优化与实现研究
本文针对局域网监控系统中传统Dijkstra算法的性能瓶颈,提出了一种基于优先队列和邻接表优化的改进方案。通过重构数据结构与计算流程,将时间复杂度从O(V²)降至O((V+E)logV),显著提升大规模网络环境下的计算效率与资源利用率。实验表明,优化后算法在包含1000节点、5000链路的网络中,计算时间缩短37.2%,内存占用减少21.5%。该算法适用于网络拓扑发现、异常流量检测、故障定位及负载均衡优化等场景,为智能化局域网监控提供了有效支持。
156 5
|
2月前
|
存储 机器学习/深度学习 监控
网络管理监控软件的 C# 区间树性能阈值查询算法
针对网络管理监控软件的高效区间查询需求,本文提出基于区间树的优化方案。传统线性遍历效率低,10万条数据查询超800ms,难以满足实时性要求。区间树以平衡二叉搜索树结构,结合节点最大值剪枝策略,将查询复杂度从O(N)降至O(logN+K),显著提升性能。通过C#实现,支持按指标类型分组建树、增量插入与多维度联合查询,在10万记录下查询耗时仅约2.8ms,内存占用降低35%。测试表明,该方案有效解决高负载场景下的响应延迟问题,助力管理员快速定位异常设备,提升运维效率与系统稳定性。
219 4
|
7月前
|
存储 算法 安全
如何控制上网行为——基于 C# 实现布隆过滤器算法的上网行为管控策略研究与实践解析
在数字化办公生态系统中,企业对员工网络行为的精细化管理已成为保障网络安全、提升组织效能的核心命题。如何在有效防范恶意网站访问、数据泄露风险的同时,避免过度管控对正常业务运作的负面影响,构成了企业网络安全领域的重要研究方向。在此背景下,数据结构与算法作为底层技术支撑,其重要性愈发凸显。本文将以布隆过滤器算法为研究对象,基于 C# 编程语言开展理论分析与工程实践,系统探讨该算法在企业上网行为管理中的应用范式。
212 8
|
7月前
|
存储 监控 算法
解析公司屏幕监控软件中 C# 字典算法的数据管理效能与优化策略
数字化办公的时代背景下,企业为维护信息安全并提升管理效能,公司屏幕监控软件的应用日益普及。此软件犹如企业网络的 “数字卫士”,持续记录员工电脑屏幕的操作动态。然而,伴随数据量的持续增长,如何高效管理这些监控数据成为关键议题。C# 中的字典(Dictionary)数据结构,以其独特的键值对存储模式和高效的操作性能,为公司屏幕监控软件的数据管理提供了有力支持。下文将深入探究其原理与应用。
175 4
|
8月前
|
机器学习/深度学习 监控 算法
员工上网行为监控软件中基于滑动窗口的C#流量统计算法解析​
在数字化办公环境中,员工上网行为监控软件需要高效处理海量网络请求数据,同时实时识别异常行为(如高频访问非工作网站)。传统的时间序列统计方法因计算复杂度过高,难以满足低延迟需求。本文将介绍一种基于滑动窗口的C#统计算法,通过动态时间窗口管理,实现高效的行为模式分析与流量计数。
228 2
|
8月前
|
人工智能 运维 算法
基于 C# 深度优先搜索算法的局域网集中管理软件技术剖析
现代化办公环境中,局域网集中管理软件是保障企业网络高效运行、实现资源合理分配以及强化信息安全管控的核心工具。此类软件需应对复杂的网络拓扑结构、海量的设备信息及多样化的用户操作,而数据结构与算法正是支撑其强大功能的基石。本文将深入剖析深度优先搜索(Depth-First Search,DFS)算法,并结合 C# 语言特性,详细阐述其在局域网集中管理软件中的应用与实现。
198 3
|
5月前
|
监控 算法 安全
基于 C# 基数树算法的网络屏幕监控敏感词检测技术研究
随着数字化办公和网络交互迅猛发展,网络屏幕监控成为信息安全的关键。基数树(Trie Tree)凭借高效的字符串处理能力,在敏感词检测中表现出色。结合C#语言,可构建高时效、高准确率的敏感词识别模块,提升网络安全防护能力。
142 2
|
6月前
|
监控 算法 数据处理
内网实时监控中的 C# 算法探索:环形缓冲区在实时数据处理中的关键作用
本文探讨了环形缓冲区在内网实时监控中的应用,结合C#实现方案,分析其原理与优势。作为固定长度的循环队列,环形缓冲区通过FIFO机制高效处理高速数据流,具备O(1)时间复杂度的读写操作,降低延迟与内存开销。文章从设计逻辑、代码示例到实际适配效果展开讨论,并展望其与AI结合的潜力,为开发者提供参考。
281 2

热门文章

最新文章