基于FPGA的图像缩小算法实现,包括tb测试文件和MATLAB辅助验证

简介: 基于FPGA的图像缩小算法实现,包括tb测试文件和MATLAB辅助验证

1.算法运行效果图预览

3e2b8b374a1141d5a05888950cc9950f_82780907_202312082247240344677054_Expires=1702047444&Signature=vNUAZK6FKSZWom1HTKxSckMQM2g%3D&domain=8.jpeg

将FPGA的处理结果导出到matlab中显示图像效果:

145111eedc2af2438497a2107bc5f844_82780907_202312082247330547601586_Expires=1702047453&Signature=Xj6yDYPn4N%2BzynSpJ48JdXLkW7M%3D&domain=8.jpeg

2.算法运行软件版本
vivado2019.2

matlab2022a

3.算法理论概述
图像放小算法主要通过抽取算法实现,常见的抽取算法最大值抽取,和均值抽取。其示意图如下所示:

88c50952d0d3a3496f9e55081b9303b9_82780907_202312082247420985514485_Expires=1702047463&Signature=vMQTTJYYVyrNYq3qUDHKDDin6cs%3D&domain=8.png

   以缩小一半为例,如果是最大值抽取,则在一个2*2窗口内,选择最大的像素输出,那么整个图像的维度就变为了原图像的一半。如果是均值抽取,则在一个2*2窗口内,选择四个像素均值输出,那么整个图像的维度就变为了原图像的一半。

   在FPGA上实现图像放小算法时,可以采用硬件并行处理的方式,以提高处理速度。具体地,可以通过图像数据缓冲单元模块来实现。

4.部分核心程序

````timescale 1ns / 1ps
//
// Company:
// Engineer:
//
// Create Date: 2022/07/28 01:51:45
// Design Name:
// Module Name: test_image
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//

module test_image;

reg i_clk;
reg i_rst;
reg i_en;
reg [7:0] image_buff [0:100000];
reg [7:0] II0;
wire [7:0] o_image;
wire flager;
integer fids,jj=0,dat;

//D:\FPGA_Proj\FPGAtest\codepz

initial
begin
fids = $fopen("D:\FPGA_Proj\FPGAtest\codepz\data.bmp","rb");
dat = $fread(image_buff,fids);
$fclose(fids);
end

initial
begin
i_clk=1;
i_rst=1;

2000;

i_rst=0;
end

always #10 i_clk=~i_clk;

always@(posedge i_clk)
begin
if(i_rst)
begin
II0<=0;
jj<=0;
end
else
begin
if(jj<=66614 & jj>=1)
i_en<=1'b1;
else
i_en<=1'b0;
II0<=image_buff[jj];
jj<=jj+1;
end
end

tops tops_u(
.i_clk (i_clk),
.i_rst (i_rst),
.i_en (i_en),
.i_I0 (II0),
.o_image (o_image),
.flager (flager)
);

reg[19:0]cnts;
always @(posedge i_clk or posedge i_rst)
begin
if(i_rst)
begin
cnts<=20'd0;
end
else begin
cnts<=cnts+20'd1;
end
end

integer fout1;
integer fout2;
initial begin
fout1 = $fopen("flager.txt","w");
fout2 = $fopen("expansion.txt","w");
end

always @ (posedge i_clk)
begin
if(cnts <= 66514)
begin
$fwrite(fout1,"%d\n",flager);
$fwrite(fout2,"%d\n",o_image);
end
else
begin
$fwrite(fout1,"%d\n",0);
$fwrite(fout2,"%d\n",0);
end

end

endmodule

```

相关文章
|
3天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
6天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
2天前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
|
7天前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。
|
1天前
|
算法 5G
基于MSWA相继加权平均的交通流量分配算法matlab仿真
本项目基于MSWA(Modified Successive Weighted Averaging)相继加权平均算法,对包含6个节点、11个路段和9个OD对的交通网络进行流量分配仿真。通过MATLAB2022A实现,核心代码展示了迭代过程及路径收敛曲线。MSWA算法在经典的SUE模型基础上改进,引入动态权重策略,提高分配结果的稳定性和收敛效率。该项目旨在预测和分析城市路网中的交通流量分布,达到用户均衡状态,确保没有出行者能通过改变路径减少个人旅行成本。仿真结果显示了27条无折返有效路径的流量分配情况。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
242 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
145 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
113 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
8月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)

热门文章

最新文章