Processing math: 100%

基于FPGA的图像缩小算法实现,包括tb测试文件和MATLAB辅助验证

简介: 基于FPGA的图像缩小算法实现,包括tb测试文件和MATLAB辅助验证

1.算法运行效果图预览

3e2b8b374a1141d5a05888950cc9950f_82780907_202312082247240344677054_Expires=1702047444&Signature=vNUAZK6FKSZWom1HTKxSckMQM2g%3D&domain=8.jpeg

将FPGA的处理结果导出到matlab中显示图像效果:

145111eedc2af2438497a2107bc5f844_82780907_202312082247330547601586_Expires=1702047453&Signature=Xj6yDYPn4N%2BzynSpJ48JdXLkW7M%3D&domain=8.jpeg

2.算法运行软件版本
vivado2019.2

matlab2022a

3.算法理论概述
图像放小算法主要通过抽取算法实现,常见的抽取算法最大值抽取,和均值抽取。其示意图如下所示:

88c50952d0d3a3496f9e55081b9303b9_82780907_202312082247420985514485_Expires=1702047463&Signature=vMQTTJYYVyrNYq3qUDHKDDin6cs%3D&domain=8.png

   以缩小一半为例,如果是最大值抽取,则在一个2*2窗口内,选择最大的像素输出,那么整个图像的维度就变为了原图像的一半。如果是均值抽取,则在一个2*2窗口内,选择四个像素均值输出,那么整个图像的维度就变为了原图像的一半。

   在FPGA上实现图像放小算法时,可以采用硬件并行处理的方式,以提高处理速度。具体地,可以通过图像数据缓冲单元模块来实现。
AI 代码解读

4.部分核心程序

````timescale 1ns / 1ps
//
// Company:
// Engineer:
//
// Create Date: 2022/07/28 01:51:45
// Design Name:
// Module Name: test_image
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//

module test_image;

reg i_clk;
reg i_rst;
reg i_en;
reg [7:0] image_buff [0:100000];
reg [7:0] II0;
wire [7:0] o_image;
wire flager;
integer fids,jj=0,dat;

//D:\FPGA_Proj\FPGAtest\codepz

initial
begin
fids = fopen("D:\FPGAProj\FPGAtest\codepz\data.bmp","rb");dat=fread(image_buff,fids);
$fclose(fids);
end

initial
begin
i_clk=1;
i_rst=1;

2000;

i_rst=0;
end

always #10 i_clk=~i_clk;

always@(posedge i_clk)
begin
if(i_rst)
begin
II0<=0;
jj<=0;
end
else
begin
if(jj<=66614 & jj>=1)
i_en<=1'b1;
else
i_en<=1'b0;
II0<=image_buff[jj];
jj<=jj+1;
end
end

tops tops_u(
.i_clk (i_clk),
.i_rst (i_rst),
.i_en (i_en),
.i_I0 (II0),
.o_image (o_image),
.flager (flager)
);

reg[19:0]cnts;
always @(posedge i_clk or posedge i_rst)
begin
if(i_rst)
begin
cnts<=20'd0;
end
else begin
cnts<=cnts+20'd1;
end
end

integer fout1;
integer fout2;
initial begin
fout1 = fopen("flager.txt","w");fout2=fopen("expansion.txt","w");
end

always @ (posedge i_clk)
begin
if(cnts <= 66514)
begin
fwrite(fout1,"fwrite(fout2,"%d\n",o_image);
end
else
begin
fwrite(fout1,"fwrite(fout2,"%d\n",0);
end

end

endmodule

```

目录
打赏
0
1
1
0
216
分享
相关文章
基于AES的遥感图像加密算法matlab仿真
本程序基于MATLAB 2022a实现,采用AES算法对遥感图像进行加密与解密。主要步骤包括:将彩色图像灰度化并重置大小为256×256像素,通过AES的字节替换、行移位、列混合及轮密钥加等操作完成加密,随后进行解密并验证图像质量(如PSNR值)。实验结果展示了原图、加密图和解密图,分析了图像直方图、相关性及熵的变化,确保加密安全性与解密后图像质量。该方法适用于保护遥感图像中的敏感信息,在军事、环境监测等领域具有重要应用价值。
基于指纹图像的数据隐藏和提取matlab仿真
本内容介绍了一种基于指纹图像的数据隐藏算法,利用指纹的个体差异性和稳定性实现信息嵌入。完整程序运行无水印,基于Matlab2022a开发。指纹图像由脊线和谷线组成,其灰度特性及纹理复杂性为数据隐藏提供可能,但也受噪声影响。核心代码附详细中文注释与操作视频,适合研究数字版权保护、秘密通信等领域应用。
基于LSB最低有效位的音频水印嵌入提取算法FPGA实现,包含testbench和MATLAB对比
本项目展示了一种基于FPGA的音频水印算法,采用LSB(最低有效位)技术实现版权保护与数据追踪功能。使用Vivado2019.2和Matlab2022a开发,完整代码含中文注释及操作视频。算法通过修改音频采样点的最低有效位嵌入水印,人耳难以察觉变化。然而,面对滤波或压缩等攻击时,水印提取可能受影响。该项目运行效果无水印干扰,适合实时应用场景,核心逻辑简单高效,时间复杂度低。
基于FPGA的信号DM编解码实现,包含testbench和matlab对比仿真
本项目展示了DM编解码算法的实现与测试结果。FPGA测试结果显示为T1,Matlab仿真结果为T2。使用软件版本为Matlab 2022a和Vivado 2019.2。核心程序包含详细中文注释和操作视频。DM编解码通过比较信号样本差值进行编码,适用于音频等低频信号处理。硬件结构包括编码器(采样器、减法器、比较器)和解码器(解码器、积分器)。
基于信息论的高动态范围图像评价算法matlab仿真
本项目基于信息论开发了一种高动态范围(HDR)图像评价算法,并通过MATLAB 2022A进行仿真。该算法利用自然图像的概率模型,研究图像熵与成像动态范围的关系,提出了理想成像动态范围的计算公式。核心程序实现了图像裁剪处理、熵计算等功能,展示了图像熵与动态范围之间的关系。测试结果显示,在[μ-3σ, μ+3σ]区间内图像熵趋于稳定,表明系统动态范围足以对景物成像。此外,还探讨了HDR图像亮度和对比度对图像质量的影响,为HDR图像评价提供了理论基础。
基于一阶梯度的图像亚像素位移matlab仿真,带GUI界面
本项目提供图像亚像素位移估计算法,使用Matlab2022a开发。完整程序无水印运行效果佳,附带详细中文注释代码和操作视频。该算法通过一阶梯度信息和泰勒级数展开,实现比像素更精细的位置变化测量,广泛应用于医学影像、遥感图像、视频监控、精密测量等领域,显著提升图像配准和分析精度。
基于图像形态学处理的移动物体目标跟踪和质心提取matlab仿真,带GUI界面
本项目展示了一种基于图像形态学处理的移动物体目标跟踪和质心提取算法。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释及操作视频。算法通过多帧图像像素值求平均、中值法或高斯混合模型估计背景,结合形态学处理(开闭运算、阈值处理)去除噪声并优化目标检测,提高准确性。颜色直方图匹配用于目标跟踪,结构元素膨胀操作扩大搜索范围,增强鲁棒性。
基于FPGA的SNN脉冲神经网络之LIF神经元verilog实现,包含testbench
本项目展示了 LIF(Leaky Integrate-and-Fire)神经元算法的实现与应用,含无水印运行效果预览。基于 Vivado2019.2 开发,完整代码配有中文注释及操作视频。LIF 模型模拟生物神经元特性,通过积分输入信号并判断膜电位是否达阈值产生脉冲,相较于 Hodgkin-Huxley 模型更简化,适合大规模神经网络模拟。核心程序片段示例,助您快速上手。
基于FPGA的变步长LMS自适应滤波器verilog实现,包括testbench
### 自适应滤波器仿真与实现简介 本项目基于Vivado2022a实现了变步长LMS自适应滤波器的FPGA设计。通过动态调整步长因子,该滤波器在收敛速度和稳态误差之间取得良好平衡,适用于信道均衡、噪声消除等信号处理应用。Verilog代码展示了关键模块如延迟单元和LMS更新逻辑。仿真结果验证了算法的有效性,具体操作可参考配套视频。
165 74
基于FPGA的2ASK+帧同步系统verilog开发,包含testbench,高斯信道,误码统计,可设置SNR
本内容展示了基于Vivado2019.2的算法仿真效果,包括设置不同信噪比(SNR=8db和20db)下的结果及整体波形。同时,详细介绍了2ASK调制解调技术的原理与实现,即通过改变载波振幅传输二进制信号,并提供数学公式支持。此外,还涉及帧同步理论,用于确定数据帧起始位置。最后,给出了Verilog核心程序代码,实现了2ASK解调与帧同步功能,结合DDS模块生成载波信号,完成信号处理流程。
29 0

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等