elasticsearch 实战(二)

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: elasticsearch 实战

elasticsearch 实战(一)https://developer.aliyun.com/article/1392075


布尔查询

布尔查询是用must、must_not、filter等方式组合其它查询,代码示例如下:

es语句

GET /hotel/_search
{
  "query": {
    "match": {
      "all": "如家"
    }
  }
}

完整代码如下:

@Test
    void testMatch() throws IOException {
        SearchResponse<HotelDoc> response = esClient.search(i->i
                .index("hotel")
                .query(q->q.match(t->t
                        .field("all")//设置请求字段
                        .query("如家")//设置请求参数
                )),
                HotelDoc.class
        );
        handleResponse(response);
    }

排序、分页

es语句

GET hotel/_search
{
  "query": {
    "match_all": {}
  },
  "from": 0,
  "size": 5,
  "sort": [
    {
      "price": {
        "order": "desc"
      }
    }
  ]
}

完整代码示例:

@Test
void testPageAndSort() throws IOException {
    // 页码,每页大小
    int page = 1, size = 5;
    // 1.准备Request
    SearchRequest request = new SearchRequest("hotel");
    // 2.准备DSL
    // 2.1.query
    request.source().query(QueryBuilders.matchAllQuery());
    // 2.2.排序 sort
    request.source().sort("price", SortOrder.ASC);
    // 2.3.分页 from、size
    request.source().from((page - 1) * size).size(5);
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);
}

高亮

高亮的代码与之前代码差异较大,有两点:

  • 查询的DSL:其中除了查询条件,还需要添加高亮条件,同样是与query同级。
  • 结果解析:结果除了要解析_source文档数据,还要解析高亮结果

高亮请求构建

es语句

GET /hotel/_search
{
  "query": {
    "match": {
      "all": "如家"
    }
  },
  "highlight": {
    "fields": {"name": {"require_field_match": "false"}}
  }
}

上述代码省略了查询条件部分,但是大家不要忘了:高亮查询必须使用全文检索查询,并且要有搜索关键字,将来才可以对关键字高亮。

完整代码如下:

@Test
    void testHighlight() throws IOException {
        SearchResponse<HotelDoc> response = esClient.search(s->s
                        .index("hotel")
                        .query(q->q.match(t->t
                                .field("all")//设置请求字段
                                .query("如家")//设置请求参数
                        ))
                        .highlight(h->h
                                .fields("name",f->f.requireFieldMatch(false))),
                HotelDoc.class
        );
        handleResponse(response);
    }

高亮结果解析

高亮的结果与查询的文档结果默认是分离的,并不在一起。

代码解读:

  • 第一步:从结果中获取source。hit.getSourceAsString(),这部分是非高亮结果,json字符串。还需要反序列为HotelDoc对象
  • 第二步:获取高亮结果。hit.getHighlightFields(),返回值是一个Map,key是高亮字段名称,值是HighlightField对象,代表高亮值
  • 第三步:从map中根据高亮字段名称,获取高亮字段值对象HighlightField
  • 第四步:从HighlightField中获取Fragments,并且转为字符串。这部分就是真正的高亮字符串了
  • 第五步:用高亮的结果替换HotelDoc中的非高亮结果

完整代码如下:

private void handleResponse(SearchResponse response) {
    // 4.解析响应
    SearchHits searchHits = response.getHits();
    // 4.1.获取总条数
    long total = searchHits.getTotalHits().value;
    System.out.println("共搜索到" + total + "条数据");
    // 4.2.文档数组
    SearchHit[] hits = searchHits.getHits();
    // 4.3.遍历
    for (SearchHit hit : hits) {
        // 获取文档source
        String json = hit.getSourceAsString();
        // 反序列化
        HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
        // 获取高亮结果
        Map<String, HighlightField> highlightFields = hit.getHighlightFields();
        if (!CollectionUtils.isEmpty(highlightFields)) {
            // 根据字段名获取高亮结果
            HighlightField highlightField = highlightFields.get("name");
            if (highlightField != null) {
                // 获取高亮值
                String name = highlightField.getFragments()[0].string();
                // 覆盖非高亮结果
                hotelDoc.setName(name);
            }
        }
        System.out.println("hotelDoc = " + hotelDoc);
    }
}
相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
6月前
elasticsearch使用 scroll 滚动分页实战实例
elasticsearch使用 scroll 滚动分页实战实例
262 0
|
4月前
|
存储 数据采集 数据处理
数据处理神器Elasticsearch_Pipeline:原理、配置与实战指南
数据处理神器Elasticsearch_Pipeline:原理、配置与实战指南
175 12
|
5月前
|
缓存 数据处理 数据安全/隐私保护
Elasticsearch索引状态管理实战指南
Elasticsearch索引状态管理实战指南
|
5月前
|
存储 索引
Elasticsearch索引之嵌套类型:深度剖析与实战应用
Elasticsearch索引之嵌套类型:深度剖析与实战应用
|
6月前
|
人工智能 自然语言处理 开发者
Langchain 与 Elasticsearch:创新数据检索的融合实战
Langchain 与 Elasticsearch:创新数据检索的融合实战
190 10
|
5月前
|
存储 JSON 搜索推荐
Springboot2.x整合ElasticSearch7.x实战(三)
Springboot2.x整合ElasticSearch7.x实战(三)
48 0
|
5月前
|
存储 自然语言处理 关系型数据库
Springboot2.x整合ElasticSearch7.x实战(二)
Springboot2.x整合ElasticSearch7.x实战(二)
50 0
|
5月前
|
搜索推荐 数据可视化 Java
Springboot2.x整合ElasticSearch7.x实战(一)
Springboot2.x整合ElasticSearch7.x实战(一)
47 0
|
6月前
|
消息中间件 Java 关系型数据库
【二十】springboot整合ElasticSearch实战(万字篇)
【二十】springboot整合ElasticSearch实战(万字篇)
963 47
|
6月前
|
存储 缓存 监控
干货 | Elasticsearch 8.X 性能优化实战
干货 | Elasticsearch 8.X 性能优化实战
600 2