阿里云GPU加速:大模型训练与推理的全流程指南

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,1000CU*H 3个月
简介: 随着深度学习和大规模模型的普及,GPU成为训练和推理的关键加速器。本文将详细介绍如何利用阿里云GPU产品完成大模型的训练与推理。我们将使用Elastic GPU、阿里云深度学习镜像、ECS(云服务器)等阿里云产品,通过代码示例和详细说明,带你一步步完成整个流程。

引言

随着深度学习和大规模模型的普及,GPU成为训练和推理的关键加速器。本文将详细介绍如何利用阿里云GPU产品完成大模型的训练与推理。我们将使用Elastic GPU、阿里云深度学习镜像、ECS(云服务器)等阿里云产品,通过代码示例和详细说明,带你一步步完成整个流程。

第一步:Elastic GPU简介

Elastic GPU是阿里云提供的GPU弹性伸缩服务。它为云服务器提供了可定制的GPU计算能力,使得用户可以根据实际需求弹性选择GPU规模。

第二步:选择合适的Elastic GPU规格

在阿里云控制台中,选择Elastic GPU服务,点击“GPU实例规格” -> “创建GPU实例”。选择适合你任务的GPU类型和数量。

第三步:选择深度学习镜像

在ECS(云服务器)控制台中,选择“镜像与实例” -> “镜像市场”,选择一个适合深度学习任务的镜像。阿里云提供了包含常用深度学习框架的镜像,例如TensorFlow、PyTorch等。

第四步:配置ECS实例与Elastic GPU

创建ECS实例时,在配置中选择刚才准备的Elastic GPU规格。确保ECS实例和Elastic GPU在同一地域。

示例:使用CLI创建ECS实例并配置Elastic GPU
aliyun ecs CreateInstance --InstanceType gpu4g --ImageId your_dnn_image_id --ZoneId your_zone_id --Amount 1

第五步:安装深度学习框架

登录ECS实例,安装所需的深度学习框架。以下是在Elastic GPU上安装TensorFlow和PyTorch的示例。

示例:在ECS实例上安装TensorFlow
pip install tensorflow-gpu

示例:在ECS实例上安装PyTorch
pip install torch torchvision

第六步:大模型训练与推理

编写模型训练和推理的代码,在ECS实例上运行。确保代码中指定了GPU加速。

示例:在TensorFlow中指定GPU
import tensorflow as tf

with tf.device('/gpu:0'):
模型定义与训练代码

示例:在PyTorch中指定GPU
import torch

device = torch.device('cuda:0')
model = YourModel().to(device)

模型训练与推理代码

结语

通过以上步骤,你已经成功在阿里云上利用Elastic GPU完成了大模型的训练与推理。Elastic GPU、ECS、深度学习镜像等产品为用户提供了灵活、高性能的GPU计算环境。

相关实践学习
在云上部署ChatGLM2-6B大模型(GPU版)
ChatGLM2-6B是由智谱AI及清华KEG实验室于2023年6月发布的中英双语对话开源大模型。通过本实验,可以学习如何配置AIGC开发环境,如何部署ChatGLM2-6B大模型。
目录
相关文章
|
4月前
|
存储 机器学习/深度学习 数据库
阿里云服务器X86/ARM/GPU/裸金属/超算五大架构技术特点、场景适配参考
在云计算技术飞速发展的当下,云计算已经渗透到各个行业,成为企业数字化转型的关键驱动力。选择合适的云服务器架构对于提升业务效率、降低成本至关重要。阿里云提供了多样化的云服务器架构选择,包括X86计算、ARM计算、GPU/FPGA/ASIC、弹性裸金属服务器以及高性能计算等。本文将深入解析这些架构的特点、优势及适用场景,以供大家了解和选择参考。
852 61
|
Serverless
📢大模型服务平台百炼“流程”功能下线通知
本文主要内容介绍了大模型服务平台百炼的“流程”功能将于2025年11月15日下线。自通知发布起,“流程”入口将逐步隐藏,建议用户尽快迁移至全新升级的工作流应用,支持MCP、函数计算及大模型节点编排,操作更便捷。2025年6月15日起,现存“流程”不可修改;11月15日起完全停用,智能体中需解除“流程”引用并替换为工作流。请参考相关文档完成迁移。
393 0
|
3月前
|
自然语言处理 前端开发 Java
JBoltAI 框架完整实操案例 在 Java 生态中快速构建大模型应用全流程实战指南
本案例基于JBoltAI框架,展示如何快速构建Java生态中的大模型应用——智能客服系统。系统面向电商平台,具备自动回答常见问题、意图识别、多轮对话理解及复杂问题转接人工等功能。采用Spring Boot+JBoltAI架构,集成向量数据库与大模型(如文心一言或通义千问)。内容涵盖需求分析、环境搭建、代码实现(知识库管理、核心服务、REST API)、前端界面开发及部署测试全流程,助你高效掌握大模型应用开发。
378 5
|
1天前
|
机器学习/深度学习 数据采集 自然语言处理
可视化大模型流程:图解Token处理与词生成过程​
本文深入解析大模型生成内容的核心技术流程:从输入分词、词嵌入,到Decoder层语义建模、LM Head输出预测,再到概率采样与自回归生成。带你理解LLM如何通过Token化、注意力机制与深度学习实现智能问答。建议点赞收藏,干货满满!
39 3
|
5月前
|
人工智能 Linux API
119K star!无需GPU轻松本地部署多款大模型,DeepSeek支持!这个开源神器绝了
"只需一行命令就能在本地运行Llama 3、DeepSeek-R1等前沿大模型,支持Windows/Mac/Linux全平台,这个开源项目让AI开发从未如此简单!"
259 0
|
2月前
|
人工智能 BI 语音技术
AR眼镜+AI大模型:颠覆工业设备验收流程的智能革命
本方案结合AR眼镜与AI视觉大模型,打造高效、精准、可追溯的设备验收流程。通过第一视角记录、智能识别、结构化数据生成与智能报表功能,提升验收效率与质量,助力企业实现智能化管理。
|
2月前
|
人工智能 缓存 数据可视化
手把手玩转本地大模型:Ollama+DeepSeek+Dify 零门槛全流程指南
本文提供从零搭建本地AI工作站的完整指南,详解本地化部署大模型的核心优势(数据隐私/离线可用/成本可控),涵盖Ollama安装、DeepSeek-Coder模型部署、Dify可视化操作及API调用实战,助你打造安全高效的私有AI开发环境。
|
3月前
|
人工智能 Java API
Java 生态大模型应用开发全流程实战案例与技术路径终极对决
在Java生态中开发大模型应用,Spring AI、LangChain4j和JBoltAI是三大主流框架。本文从架构设计、核心功能、开发体验、性能扩展性、生态社区等维度对比三者特点,并结合实例分析选型建议。Spring AI适合已有Spring技术栈团队,LangChain4j灵活性强适用于学术研究,JBoltAI提供开箱即用的企业级解决方案,助力传统系统快速AI化改造。开发者可根据业务场景和技术背景选择最适合的框架。
485 2
|
5月前
|
人工智能 边缘计算 前端开发
人工智能平台 PAI DistilQwen2.5-DS3-0324发布:知识蒸馏+快思考=更高效解决推理难题
DistilQwen 系列是阿里云人工智能平台 PAI 推出的蒸馏语言模型系列,包括DistilQwen2、DistilQwen2.5、DistilQwen2.5-R1 等。DistilQwen2.5-DS3-0324 系列模型是基于 DeepSeek-V3-0324 通过知识蒸馏技术并引入快思考策略构建,显著提升推理速度,使得在资源受限的设备和边缘计算场景中,模型能够高效执行复杂任务。实验显示,DistilQwen2.5-DS3-0324 系列中的模型在多个基准测试中表现突出,其32B模型效果接近参数量接近其10倍的闭源大模型。
|
4月前
|
人工智能 测试技术 API
通义灵码 + 魔搭MCP:全流程构建创空间应用
最近,通义灵码上线 MCP(ModelScope Cloud Platform)功能,从之前代码生成及修改的基础功能,到可以使用MCP服务连接更多功能,开发者可以实现从 代码爬取、模型推理到应用部署
1160 26