【Linux】:体系结构与进程概念

简介: 【Linux】:体系结构与进程概念

1. 冯诺依曼体系结构

我们常见的计算机,如笔记本。我们不常见的计算机,如服务器,大部分都遵守冯诺依曼体系。

  • 计算机里面几乎所有的设备,都具有存储数据的能力。
  • CPU处理数据的能力是非常快的,其次是内存,然后是各种外设。

为什么各种计算机、服务器大部分都要遵守冯诺依曼体系呢?

以CPU为中心,距离CPU越近的,存储效率越高,造价越贵。

那么这些存储器有存储效率与存储速度的区别,那么为什么不全都使用存储效率最好的存储器来组成计算机呢?

理论上是可以的,但是最关键的一点就是:太太太贵了!!!,因为计算机是需要大部分平民百姓去使用的,并不是只有一少部分富豪来使用,但如果都是用最为便宜的存储器来组成,那么造出来的计算机基本不能用,所以需要进行取中,在兼具性能的同时,也需要注意造价。

基于冯诺依曼体系结构的计算机的本质就是:用较少的成本,打造出来效率不错的计算机。

2. 操作系统

2.1 概念

任何计算机系统都包含一个基本的程序集合,称为操作系统(OS)。大体的理解,操作系统包括:

  • 内核(进程管理,内存管理,文件管理,驱动管理)
  • 其他程序(例如函数库,shell程序等等)

我们的计算机在开机时第一个加载的软件就是操作系统,它是一款软件,进行软硬件资源管理的软件。

为什么要有操作系统?

手段:操作系统将软硬件资源管理好。

目的:给用户提供良好(安全、稳定、搞笑)的使用环境。

2.2 关于管理

在整个计算机软硬件架构中,操作系统的定位是:一款纯正的“搞管理”的软件。

操作系统内部,一定会存在大量的数据对象和数据结构。那么OS是如何管理各种各样的数据呢?

在操作系统的内部,各种数据信息都是以一种数据结构--链表来进行存储管理的,链表中的每一个节点存储各种信息的属性,通过节点的指针将各个信息属性的节点连接起来,这样子就通过对链表的增删查改来实现对各种信息的管理。

2.4 总结

计算机管理硬件

  • 1. 描述起来,用struct结构体
  • 2. 组织起来,用链表或其他高效的数据结构
  • 3. 简要概括为:先描述,再组织

3. 系统调用

  • 在开发角度,操作系统对外会表现为一个整体但是会暴露自己的部分接口,供上层开发使用,这部分由操作系统提供的接口,叫做系统调用。
  • 系统调用在使用上,功能比较基础,对用户的要求相对也比较高,所以,有心的开发者可以对部分系统调用进行适度封装,从而形成库,有了库,就很有利于更上层用户或者开发者进行二次开发。

首先我们需要了解一下操作系统管理的核心:

  • 进程管理
  • 内存管理
  • 文件/IO管理
  • 驱动管理

那么关于管理方面总结出来的就是:“先描述。再组织

我们可以再将操作系统的层状结构拿过来看一下:

可以看到在用户到操作系统这一环节其中还是需要经过两层结构,那么为什么用户不能直接的去访问操作系统呢?

那么这里就涉及到一个安全的问题,对于操作系统来说,它是不相信任何一个人的,无论是谁,但是呢,它也要为我们做各种事情,那么就需要用到上述提到的OS暴露出来的一部分接口:系统调用接口。用户首先使用用户操作的接口来根据所需让系统调用接口去与操作系统进行交互,使得操作系统做出对应的操作。

在现实中也存在类似于操作系统与用户这样的例子,比如:银行与办理业务的社会人员,银行不会直接让你操作银行的资源系统,而是开放对应的窗口,设置对应的工作人员,你只需要将你的意愿转达给业务人员,那么他们就会实施对应的操作。

注意:

一般一个用户想要访问非常底层的OS数据或者访问硬件,都必须贯穿于整个层状结构。(用户必定要调用系统调用)

4. 进程

那在还没有学习进程之前,就问大家,操作系统是怎么管理进行进程管理的呢?很简单,先把进程描述起来,再把进程组织起来!

在我们的计算里面存在许多的可执行程序,这些可执行程序是存储在磁盘当中的,当启动可执行程序时,这个可执行程序会加载到我们的内存中。当我们打开许多的可执行程序之后,OS该如何去管理内存中的这些可执行程序呢?

先把进程描述起来,再把进程组织起来!

4.1 基本概念

基本概念:程序的一个执行实例,正在执行的程序等
内核观点:担当分配系统资源(CPU时间,内存)的实体

4.2 描述进程

  • 进程信息被放在一个叫做进程控制块的数据结构中,可以理解为进程属性的集合。
  • 也被称之为进程PCB(process control block),Linux操作系统下的PCB是: task_struct

简而言之就是这个PCB中存放的是这个可执行程序的各种属性信息。

那么到这里再来看进程:

进程 = 可执行程序 + 内核数据结构(PCB)

这同时也回归到了我们的先描述,再组织,对进程的管理转化为对PCB链表节点的增删查改,这样有助于OS对进程的管理。

task_struct-PCB

  • 在Linux中描述进程的结构体叫做task_struct。
  • task_struct是Linux内核的一种数据结构,它会被装载到RAM(内存)里并且包含着进程的属性信息。

task_ struct内容分类

  • 标示符: 描述本进程的唯一标示符,用来区别其他进程。
  • 状态: 任务状态,退出代码,退出信号等。
  • 优先级: 相对于其他进程的优先级。
  • 程序计数器: 程序中即将被执行的下一条指令的地址。
  • 内存指针: 包括程序代码和进程相关数据的指针,还有和其他进程共享的内存块的指针
  • 上下文数据: 进程执行时处理器的寄存器中的数据[休学例子,要加图CPU,寄存器]。
  • I/O状态信息: 包括显示的I/O请求,分配给进程的I/O设备和被进程使用的文件列表。
  • 记账信息: 可能包括处理器时间总和,使用的时钟数总和,时间限制,记账号等。
  • 其他信息

所有运行在系统里的进程都以task_struct链表的形式存在内核里。

Linux中的进程PCB具体指的是:struct task_struct{}

朋友们、伙计们,美好的时

光总是短暂的,我们本期的的分享就到此结束,欲知后事如何,请听下回分解~,最后看完别忘了留下你们弥足珍贵的三连喔,感谢大家的支持!  

目录
打赏
0
0
0
0
29
分享
相关文章
【Linux进程概念】—— 操作系统中的“生命体”,计算机里的“多线程”
在计算机系统的底层架构中,操作系统肩负着资源管理与任务调度的重任。当我们启动各类应用程序时,其背后复杂的运作机制便悄然展开。程序,作为静态的指令集合,如何在系统中实现动态执行?本文带你一探究竟!
【Linux进程概念】—— 操作系统中的“生命体”,计算机里的“多线程”
【YashanDB 知识库】如何避免 yasdb 进程被 Linux OOM Killer 杀掉
本文来自YashanDB官网,探讨Linux系统中OOM Killer对数据库服务器的影响及解决方法。当内存接近耗尽时,OOM Killer会杀死占用最多内存的进程,这可能导致数据库主进程被误杀。为避免此问题,可采取两种方法:一是在OS层面关闭OOM Killer,通过修改`/etc/sysctl.conf`文件并重启生效;二是豁免数据库进程,由数据库实例用户借助`sudo`权限调整`oom_score_adj`值。这些措施有助于保护数据库进程免受系统内存管理机制的影响。
【Linux】进程概念和进程状态
本文详细介绍了Linux系统中进程的核心概念与管理机制。从进程的定义出发,阐述了其作为操作系统资源管理的基本单位的重要性,并深入解析了task_struct结构体的内容及其在进程管理中的作用。同时,文章讲解了进程的基本操作(如获取PID、查看进程信息等)、父进程与子进程的关系(重点分析fork函数)、以及进程的三种主要状态(运行、阻塞、挂起)。此外,还探讨了Linux特有的进程状态表示和孤儿进程的处理方式。通过学习这些内容,读者可以更好地理解Linux进程的运行原理并优化系统性能。
34 4
|
30天前
|
Linux:守护进程(进程组、会话和守护进程)
守护进程在 Linux 系统中扮演着重要角色,通过后台执行关键任务和服务,确保系统的稳定运行。理解进程组和会话的概念,是正确创建和管理守护进程的基础。使用现代的 `systemd` 或传统的 `init.d` 方法,可以有效地管理守护进程,提升系统的可靠性和可维护性。希望本文能帮助读者深入理解并掌握 Linux 守护进程的相关知识。
42 7
|
29天前
|
Linux 进程前台后台切换与作业控制
进程前台/后台切换及作业控制简介: 在 Shell 中,启动的程序默认为前台进程,会占用终端直到执行完毕。例如,执行 `./shella.sh` 时,终端会被占用。为避免不便,可将命令放到后台运行,如 `./shella.sh &`,此时终端命令行立即返回,可继续输入其他命令。 常用作业控制命令: - `fg %1`:将后台作业切换到前台。 - `Ctrl + Z`:暂停前台作业并放到后台。 - `bg %1`:让暂停的后台作业继续执行。 - `kill %1`:终止后台作业。 优先级调整:
49 5
Linux 进程管理基础
Linux 进程是操作系统中运行程序的实例,彼此隔离以确保安全性和稳定性。常用命令查看和管理进程:`ps` 显示当前终端会话相关进程;`ps aux` 和 `ps -ef` 显示所有进程信息;`ps -u username` 查看特定用户进程;`ps -e | grep <进程名>` 查找特定进程;`ps -p <PID>` 查看指定 PID 的进程详情。终止进程可用 `kill <PID>` 或 `pkill <进程名>`,强制终止加 `-9` 选项。
27 3
进程基础:概念、状态与生命周期
进程是操作系统进行资源分配和调度的基本单位,由程序段、数据段和进程控制块(PCB)组成。线程是进程中更小的执行单元,能独立运行且共享进程资源,具有轻量级和并发性特点。进程状态包括就绪、运行和阻塞,其生命周期分为创建、就绪、运行、阻塞和终止阶段。
73 2
掌握taskset:优化你的Linux进程,提升系统性能
在多核处理器成为现代计算标准的今天,运维人员和性能调优人员面临着如何有效利用这些处理能力的挑战。优化进程运行的位置不仅可以提高性能,还能更好地管理和分配系统资源。 其中,taskset命令是一个强大的工具,它允许管理员将进程绑定到特定的CPU核心,减少上下文切换的开销,从而提升整体效率。
掌握taskset:优化你的Linux进程,提升系统性能
Linux系统CPU异常占用(minerd 、tplink等挖矿进程)
Linux系统CPU异常占用(minerd 、tplink等挖矿进程)
258 4
Linux系统CPU异常占用(minerd 、tplink等挖矿进程)
探索进程调度:Linux内核中的完全公平调度器
【8月更文挑战第2天】在操作系统的心脏——内核中,进程调度算法扮演着至关重要的角色。本文将深入探讨Linux内核中的完全公平调度器(Completely Fair Scheduler, CFS),一个旨在提供公平时间分配给所有进程的调度器。我们将通过代码示例,理解CFS如何管理运行队列、选择下一个运行进程以及如何对实时负载进行响应。文章将揭示CFS的设计哲学,并展示其如何在现代多任务计算环境中实现高效的资源分配。