关于Python的Numpy库reshape()函数的用法

简介: 1.介绍更改数组的形状,不改变原数组2.语法a = np.reshape(mat, newshape, order = ‘C’)a : newshape形状的新数组mat : 原数组

1.介绍

更改数组的形状,不改变原数组

2.语法

a = np.reshape(mat, newshape, order = ‘C’)

a : newshape形状的新数组

mat : 原数组

newshape:(1, 2)/ 1, 2 都可以改为1行2列的数组

order:读取原数组的规则,默认为C(C行优先,F按某种方式,但不是列优先!)

order暂时按这么理解。

3.使用

  1. b = np.reshape(a, newshape)
  2. b = a.reshape(newshape)

key:其中newshape中可以有参数-1,意义为模糊推测,如(-1, 2)我不管你有行,修改为2列的二维数组即可;如(3,-1)我不管你有几列,修改为3行的二维数组即可

3.1 order的引用示例

行优先:

import numpy as np
a = np.array([[1, 2, 3, 10], [4, 5, 6, 11], [7, 8, 9, 12]])
print("原数组:")
print(a)
# 修改为1,行12列数组,顺序读取
b = a.reshape(1, 12, order='C')
print("修改后:")
print(b)


dbab2e18ff874bfda5fd2c54ddd511fb.png

F方式读取

import numpy as np
a = np.array([[1, 2, 3, 10], [4, 5, 6, 11], [7, 8, 9, 12]])
print("原数组:")
print(a)
# 修改为1行12列,按列优先读取
b = a.reshape(1, 12, order='F')
print("修改后:")
print(b)


04eb4dcb33f64ab48254e184e15fba78.png

非列优先

3.2 实际用法(一般order为默认值)

给定形状

import numpy as np
# 3行4列的二维数组
a = np.array([[1, 2, 3, 10], [4, 5, 6, 11], [7, 8, 9, 12]])
print("原数组:")
print(a)
# 此时中间只剩newshape,2行6列
b = a.reshape(2,6)
print("修改后:")
print(b)


d19b17dd2d9b409cbf026de718dcfd5e.png

模糊推测,推测列

import numpy as np
# 3行4列的二维数组
a = np.array([[1, 2, 3, 10], [4, 5, 6, 11], [7, 8, 9, 12]])
print("原数组:")
print(a)
# 此时中间只剩newshape,修改为6行的数组就行,多少列我不知道
b = a.reshape(6, -1)
print("修改后:")
print(b)

模糊推测,推测行

import numpy as np
# 3行4列的二维数组
a = np.array([[1, 2, 3, 10], [4, 5, 6, 11], [7, 8, 9, 12]])
print("原数组:")
print(a)
# 此时中间只剩newshape,修改为3列的数组就行,多少行我不知道
b = a.reshape(-1, 3)
print("修改后:")
print(b)


b47d038e241a4f95a1a85871e06ecdb3.png

模糊推测升维

import numpy as np
# 3行4列的二维数组
a = np.array([[1, 2, 3, 10], [4, 5, 6, 11], [7, 8, 9, 12]])
print("原数组:")
print(a)
# 此时中间只剩newshape,修改为3行2列的子数组,多少行我不知道
b = a.reshape((-1, 3, 2))
print("修改后:")
print(b)


8f3f6cab78024748864c98b78e47653c.png

key:在数组的一开始,数方括号,个数即为维数,原数组为二维数组,修改的数组为3维数组

以上就是reshape的用法,后续可能还会补充,欢迎在评论区讨论哦!

目录
相关文章
|
17天前
|
调度 开发者 Python
Python中的异步编程:理解asyncio库
在Python的世界里,异步编程是一种高效处理I/O密集型任务的方法。本文将深入探讨Python的asyncio库,它是实现异步编程的核心。我们将从asyncio的基本概念出发,逐步解析事件循环、协程、任务和期货的概念,并通过实例展示如何使用asyncio来编写异步代码。不同于传统的同步编程,异步编程能够让程序在等待I/O操作完成时释放资源去处理其他任务,从而提高程序的整体效率和响应速度。
|
20天前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
51 0
|
6天前
|
XML 存储 数据库
Python中的xmltodict库
xmltodict是Python中用于处理XML数据的强大库,可将XML数据与Python字典相互转换,适用于Web服务、配置文件读取及数据转换等场景。通过`parse`和`unparse`函数,轻松实现XML与字典间的转换,支持复杂结构和属性处理,并能有效管理错误。此外,还提供了实战案例,展示如何从XML配置文件中读取数据库连接信息并使用。
Python中的xmltodict库
|
13天前
|
数据库 Python
异步编程不再难!Python asyncio库实战,让你的代码流畅如丝!
在编程中,随着应用复杂度的提升,对并发和异步处理的需求日益增长。Python的asyncio库通过async和await关键字,简化了异步编程,使其变得流畅高效。本文将通过实战示例,介绍异步编程的基本概念、如何使用asyncio编写异步代码以及处理多个异步任务的方法,帮助你掌握异步编程技巧,提高代码性能。
49 4
|
13天前
|
API 数据处理 Python
探秘Python并发新世界:asyncio库,让你的代码并发更优雅!
在Python编程中,随着网络应用和数据处理需求的增长,并发编程变得愈发重要。asyncio库作为Python 3.4及以上版本的标准库,以其简洁的API和强大的异步编程能力,成为提升性能和优化资源利用的关键工具。本文介绍了asyncio的基本概念、异步函数的定义与使用、并发控制和资源管理等核心功能,通过具体示例展示了如何高效地编写并发代码。
25 2
|
14天前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
33 2
|
18天前
|
数据采集 JSON 测试技术
Python爬虫神器requests库的使用
在现代编程中,网络请求是必不可少的部分。本文详细介绍 Python 的 requests 库,一个功能强大且易用的 HTTP 请求库。内容涵盖安装、基本功能(如发送 GET 和 POST 请求、设置请求头、处理响应)、高级功能(如会话管理和文件上传)以及实际应用场景。通过本文,你将全面掌握 requests 库的使用方法。🚀🌟
38 7
|
19天前
|
机器学习/深度学习 数据采集 算法
Python机器学习:Scikit-learn库的高效使用技巧
【10月更文挑战第28天】Scikit-learn 是 Python 中最受欢迎的机器学习库之一,以其简洁的 API、丰富的算法和良好的文档支持而受到开发者喜爱。本文介绍了 Scikit-learn 的高效使用技巧,包括数据预处理(如使用 Pipeline 和 ColumnTransformer)、模型选择与评估(如交叉验证和 GridSearchCV)以及模型持久化(如使用 joblib)。通过这些技巧,你可以在机器学习项目中事半功倍。
24 3
|
12天前
|
数据采集 数据可视化 数据挖掘
利用Python进行数据分析:Pandas库实战指南
利用Python进行数据分析:Pandas库实战指南
|
18天前
|
文字识别 自然语言处理 API
Python中的文字识别利器:pytesseract库
`pytesseract` 是一个基于 Google Tesseract-OCR 引擎的 Python 库,能够从图像中提取文字,支持多种语言,易于使用且兼容性强。本文介绍了 `pytesseract` 的安装、基本功能、高级特性和实际应用场景,帮助读者快速掌握 OCR 技术。
37 0
下一篇
无影云桌面