【MATLAB 】CNN卷积神经网络回归预测

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,5000CU*H 3个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 【MATLAB 】CNN卷积神经网络回归预测


1 基本定义

随机森林时序预测算法是一种基于随机森林的时间序列预测方法。它的基本思想是利用多个决策树对时序数据进行预测,其中每个决策树都使用不同的随机抽样方式选择训练数据,以减小过拟合的风险。 随机森林时序预测算法的主要步骤如下:

  1. 样本抽样:从原始数据中随机抽取一部分样本,用于训练每个决策树。
  2. 特征抽样:从原始特征中随机选取一部分特征,用于训练每个决策树。
  3. 决策树训练:使用抽样得到的样本和特征,构建多个决策树,其中每个树都是一组独立的分类器。
  4. 预测:对于新的输入数据,使用构建的决策树进行预测,最终输出每个决策树的预测值的平均值,作为最终的预测值。 随机森林时序预测算法具有以下优点:
  5. 可以处理大规模、高维度的数据。
  6. 具有较高的准确性和稳定性,在处理噪声和缺失值方面表现良好。
  7. 可以有效地处理非线性数据和复杂模型。
  8. 可以进行特征选择,从而提高模型的泛化能力。总之,随机森林时序预测算法是一种有效的时间序列预测方法,可以用于各种领域,如金融、医疗、气象等,具有广泛的应用前景。

2 出图效果

附出图效果如下:

附视频教程操作:

【MATLAB 】CNN卷积神经网络回归预测代码:

https://mbd.pub/o/bread/ZJyXm59y

7 种回归预测方案全家桶详情请参见:

https://mbd.pub/o/bread/ZJyYkpZv

4 种时序预测方案全家桶详情请参见:

https://mbd.pub/o/bread/ZJiTmJxr

5 种时序预测方案全家桶详情请参见:

https://mbd.pub/o/bread/ZJaXlJts

9 种时序预测方案全家桶详情请参见:

https://mbd.pub/o/bread/ZJiTmJxx

关于代码有任何疑问,均可关注公众号(Lwcah)后,后台回复关键词:微信号。

获取 up 的个人微信号,添加微信号后可以一起探讨科研,写作,代码等诸多学术问题,我们一起进步~

目录
相关文章
|
4天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面
本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。
50 31
|
23天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
13天前
|
机器学习/深度学习 算法 Python
基于BP神经网络的金融序列预测matlab仿真
本项目基于BP神经网络实现金融序列预测,使用MATLAB2022A版本进行开发与测试。通过构建多层前馈神经网络模型,利用历史金融数据训练模型,实现对未来金融时间序列如股票价格、汇率等的预测,并展示了预测误差及训练曲线。
|
11天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
14天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
16天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
|
20天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。
|
23天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
|
27天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN): 从理论到实践
本文将深入浅出地介绍卷积神经网络(CNN)的工作原理,并带领读者通过一个简单的图像分类项目,实现从理论到代码的转变。我们将探索CNN如何识别和处理图像数据,并通过实例展示如何训练一个有效的CNN模型。无论你是深度学习领域的新手还是希望扩展你的技术栈,这篇文章都将为你提供宝贵的知识和技能。
81 7
|
23天前
|
机器学习/深度学习 自然语言处理 算法
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
32 1