阿里云人工智能平台PAI多篇论文入选EMNLP 2023

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 近期,阿里云人工智能平台PAI主导的多篇论文在EMNLP2023上入选。EMNLP是人工智能自然语言处理领域的顶级国际会议,聚焦于自然语言处理技术在各个应用场景的学术研究,尤其重视自然语言处理的实证研究。该会议曾推动了预训练语言模型、文本挖掘、对话系统、机器翻译等自然语言处理领域的核心创新,在学术和工业界都有巨大的影响力。此次入选意味着阿里云人工智能平台PAI自研的自然语言处理算法达到了全球业界先进水平,获得了国际学者的认可,展现了中国人工智能技术创新在国际上的竞争力。

近期,阿里云人工智能平台PAI主导的多篇论文在EMNLP2023上入选。EMNLP是人工智能自然语言处理领域的顶级国际会议,聚焦于自然语言处理技术在各个应用场景的学术研究,尤其重视自然语言处理的实证研究。该会议曾推动了预训练语言模型、文本挖掘、对话系统、机器翻译等自然语言处理领域的核心创新,在学术和工业界都有巨大的影响力。此次入选意味着阿里云人工智能平台PAI自研的自然语言处理算法达到了全球业界先进水平,获得了国际学者的认可,展现了中国人工智能技术创新在国际上的竞争力。

论文简述

面向Stable Diffusion的自动Prompt工程算法BeautifulPrompt

文生图是AIGC中最引人注目和广泛应用的技术之一,旨在通过文本输入创建逼真的图像。然而,文成图模型要求用户在模型推理之前编写文本提示(例如“一艘雄伟的帆船”)。编写满足设计师或艺术工作者需求的这些提示充满了不确定性,就像开盲盒一样。这是由于训练数据的质量问题,导致需要详细的描述才能生成高质量的图像。在现实场景中,非专家往往很难手工编写这些提示,并且需要通过试错的迭代修改来重新生成图像,从而导致时间和计算资源的严重浪费。BeautifulPrompt模型关注于大语言模型(LLM)自动地生成高质量的提示词,与InstructGPT类似,采用了三阶段的训练方式。下图展示了使用简单的图片描述和BeautifulPrompt之后生产的图片:

image.png


为了验证BeautifulPrompt的有效性,我们在一些基于模型打分的客观指标和人类主观评估上做了评测,结果验证了BeautifulPrompt显著提升了提示词的质量,可以生成高质量的图像。

面向垂直领域的知识预训练语言模型

知识增强预训练语言模型(KEPLM)通过从大规模知识图(KGs)中注入知识事实来提高各种下游NLP任务的性能。然而,由于缺乏足够的域图语义,这些构建开放域KEPLM的方法很难直接迁移到垂直领域,因为它们缺乏对垂直领域KGs的特性进行深入建模。如下图所示,KG实体相对于纯文本的覆盖率在垂直领域中明显低于开放域,表明领域知识注入存在全局稀疏现象。这意味着将检索到的少数相关三元组直接注入到PLM中对于领域来说可能是不够的。我们进一步注意到,在垂直领域KGs中,最大点双连通分量的比率要高得多,这意味着这些KGs中同一实体类下的实体相互连接更紧密,并表现出局部密度特性。

1701847265734_E8B014EA-D2D5-4343-AE47-968792BC9CDA.png

这一工作研究是基于上述领域KG的数据特性提出了一个简单但有效的统一框架来学习各种垂直领域的KEPLM。它分别通过双曲空间学习垂直领域图谱数据的分层语义信息来补充全局语义稀疏模块Hyperbolic Knowledge-aware Aggregator,通过捕捉领域图谱稠密的图结构构造基于点双联通分量的对比学习模块Multi-Level Knowledge-aware Augmenter。

1701847371958_B2714B96-0FB2-450a-809D-0DE52C43684B.png

我们选取了金融和医疗等领域的各种下游任务的全数据量和少样本数据量场景进行评测,结果体现出这个模型的优越性。

基于大语言模型的复杂任务认知推理算法CogTree

随着深度学习在自然语言处理、机器翻译等任务上的不断发展,人们对如何将深度学习应用到自然语言处理中越来越感兴趣,由此出现了大语言模型(例如GPT-3.5),并已在文本生成、情感分析、对话系统等多个任务上取得了重大突破。大语言模型通常基于大规模文本数据进行预训练,然后通过微调在特定任务上进行优化,以生成高质量的文本输出。然而,对于语言模型而言,复杂的逻辑推理问题和数学问题的求解仍然是很困难的。并且,传统的语言模型缺乏认知能力。在处理涉及冗长的推理链或多步解决方案的问题时,对于问题及其当前回答的评估是很重要的。然而,目前的方法例如Chain-of-thought等通常缺乏对于中间过程的验证。并且大型语言模型的部署和推理成本相对较高,特别是在利用无参数更新的推理增强技术时。这些技术需要大量的上下文和多步的答案生成,进一步增加了推理成本和时间。

这一工作研究面向轻量化大模型的复杂任务推理,使用较小规模的模型(7B),构建双系统生成推理树,大大增强模型在复杂数学问题和逻辑推理问题上的回答能力。提出了一种大模型面向复杂数学问题的求解方法。该方法基于人类的认知理论,通过两个系统:直觉系统和反思系统来模仿人类产生认知的过程。直觉系统负责产生原始问题的多个分解假设,反思系统对直觉系统产生的假设进行验证,并选择更有可能的假设进行后续生成,直到达到最终结果。通过上述双系统的迭代式生成,可以提升大模型的解题准确度。

1701847415776_498317BE-B6DD-464c-879D-54AC391305A6.png

我们在Entailment Bank逻辑推理数据集以及GSM8K数学问题数据集上进行了测试,效果证明CogTree对大模型复杂任务上的回答准确率提升明显。

基于知识迁移的跨语言机器阅读理解算法

大规模预训练语言模型的广泛应用,促进了NLP各个下游任务准确度大幅提升,然而,传统的自然语言理解任务通常需要大量的标注数据来微调预训练语言模型。但低资源语言缺乏标注数据集,难以获取。大部分现有的机器阅读理解(MRC)数据集都是英文的,这对于其他语言来说是一个困难。其次,不同语言之间存在语言和文化的差异,表现为不同的句子结构、词序和形态特征。例如,日语、中文、印地语和阿拉伯语等语言具有不同的文字系统和更复杂的语法系统,这使得MRC模型难以理解这些语言的文本。为了解决这些挑战,现有文献中通常采用基于机器翻译的数据增强方法,将源语言的数据集翻译成目标语言进行模型训练。然而,在MRC任务中,由于翻译导致的答案跨度偏移,无法直接使用源语言的输出分布来教导目标语言。

这一工作提出了一种名为X-STA的跨语言MRC方法,遵循三个原则:共享、教导和对齐。共享方面,提出了梯度分解的知识共享技术,通过使用平行语言对作为模型输入,从源语言中提取知识,增强对目标语言的理解,同时避免源语言表示的退化。教导方面,本方法利用注意机制,在目标语言的上下文中寻找与源语言输出答案语义相似的答案跨度,用于校准输出答案。对齐方面,多层次的对齐被利用来进一步增强MRC模型的跨语言传递能力。通过知识共享、教导和多层次对齐,本方法可以增强模型对不同语言的语言理解能力。

1701847438719_216D09F9-2D01-4565-AE37-D1F82F565708.png

了验证X-STA算法的有效性,我们在三个跨语言MRC数据集上进行了测试,效果证明X-STA对精度提升明显。

上述科研成果也在PAI产品的各个模块进行了深度的集成和整合,持续为PAI客户提供AI模型训练相关服务。其中,BeautifulPrompt技术已经作为SD WebUI的可扩展插件和PAI-EAS在线推理服务进行集成,使得PAI客户在5分钟内就可以在PAI-EAS上一键部署SD WebUI,使用各种AIGC文图生成功能。此外,PAI-QuickStart也集成了超过20个热门大语言模型,及其多种训练和推理方式,使客户更加简单地微调和部署大语言模型。在未来,我们也将在PAI平台上持续提供业界领先的算法和模型能力给广大客户。

论文信息

论文标题:BeautifulPrompt: Towards Automatic Prompt Engineering for Text-to-Image Synthesis
论文作者:曹庭锋、汪诚愚、刘冰雁、吴梓恒、朱金辉、黄俊

论文pdf链接:https://arxiv.org/abs/2311.06752


论文标题:Learning Knowledge-Enhanced Contextual Language Representations for Domain Natural Language Understanding
论文作者:徐如瑶、张涛林、汪诚愚、段忠杰、陈岑、邱明辉、程大伟、何晓丰、钱卫宁

论文pdf链接:https://arxiv.org/abs/2311.06761


论文标题:From Complex to Simple: Unraveling the Cognitive Tree for Reasoning with Small Language Models
论文作者:严俊冰、汪诚愚、张涛林、何晓丰、黄俊、张伟

论文pdf链接:https://arxiv.org/abs/2311.06754


论文标题:Sharing, Teaching and Aligning: Knowledgeable Transfer Learning for Cross-Lingual Machine Reading Comprehension
论文作者:曹庭锋、汪诚愚、谭传奇、黄俊、朱金辉

论文pdf链接:https://arxiv.org/abs/2311.06758

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
3月前
|
人工智能 运维 安全
阿里云通过ISO42001人工智能管理认证,引领AI治理推动协同共治
9月19日,在杭州云栖大会「AI治理与安全论坛」上,阿里云宣布通过人工智能技术的全生命周期管理ISO42001体系认证。该项认证由国际标准化组织(ISO)和国际电工委员会(IEC)制定,是第一部可认证的人工智能国际管理体系标准。
143 14
|
25天前
|
机器学习/深度学习 人工智能 算法
国内首家! 阿里云人工智能平台 PAI 通过 ITU 国际标准测评
阿里云人工智能平台 PAI 顺利通过中国信通院组织的 ITU-T AICP-GA国际标准和《智算工程平台能力要求》国内标准一致性测评,成为国内首家通过该标准的企业。阿里云人工智能平台 PAI 参与完成了智算安全、AI 能力中心、数据工程、模型开发训练、模型推理部署等全部八个能力域,共计220余个用例的测试,并100%通过测试要求,获得了 ITU 国际标准和国内可信云标准评估通过双证书。
国内首家! 阿里云人工智能平台 PAI 通过 ITU 国际标准测评
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
【NeurIPS'24】阿里云 PAI 团队论文被收录为 Spotlight,并完成主题演讲分享
12月10日,NeurIPS 2024在温哥华开幕,阿里云PAI团队论文《PertEval: Unveiling Real Knowledge Capacity of LLMs with Knowledge-Invariant Perturbations》入选Spotlight,PAI团队还进行了“可信AI的技术解读与最佳实践”主题演讲,展示AI工程化平台产品能力。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【EMNLP2024】阿里云人工智能平台 PAI 多篇论文入选 EMNLP2024
阿里云人工智能平台 PAI 的多篇论文在 EMNLP2024 上入选。论文成果是阿里云与华南理工大学金连文教授团队、复旦大学王鹏教授团队共同研发。EMNLP 是人工智能自然语言处理领域的顶级国际会议,聚焦于自然语言处理技术在各个应用场景的学术研究,尤其重视自然语言处理的实证研究。该会议曾推动了预训练语言模型、文本挖掘、对话系统、机器翻译等自然语言处理领域的核心创新,在学术和工业界都有巨大的影响力。此次入选标志着阿里云人工智能平台 PAI 在自然语言处理和多模态算法能力方面研究获得了学术界认可。
|
1月前
|
机器学习/深度学习 人工智能 弹性计算
阿里云AI服务器价格表_GPU服务器租赁费用_AI人工智能高性能计算推理
阿里云AI服务器提供多种配置选项,包括CPU+GPU、CPU+FPGA等组合,支持高性能计算需求。本文汇总了阿里云GPU服务器的价格信息,涵盖NVIDIA A10、V100、T4、P4、P100等多款GPU卡,适用于人工智能、机器学习和深度学习等场景。详细价格表和实例规格见文内图表。
190 0
|
2月前
|
机器学习/深度学习 搜索推荐 算法
机器学习-点击率预估-论文速读-20240916
机器学习-点击率预估-论文速读-20240916
42 0
|
4月前
|
机器学习/深度学习 人工智能 弹性计算
阿里云AI服务器价格表_GPU服务器租赁费用_AI人工智能高性能计算推理
阿里云AI服务器提供多样化的选择,包括CPU+GPU、CPU+FPGA等多种配置,适用于人工智能、机器学习和深度学习等计算密集型任务。其中,GPU服务器整合高性能CPU平台,单实例可实现最高5PFLOPS的混合精度计算能力。根据不同GPU类型(如NVIDIA A10、V100、T4等)和应用场景(如AI训练、推理、科学计算等),价格从数百到数千元不等。详情及更多实例规格可见阿里云官方页面。
282 1
|
16天前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能在医疗诊断中的应用与前景####
本文深入探讨了人工智能(AI)技术在医疗诊断领域的应用现状、面临的挑战及未来发展趋势。通过分析AI如何辅助医生进行疾病诊断,提高诊断效率和准确性,以及其在个性化医疗中的潜力,文章揭示了AI技术对医疗行业变革的推动作用。同时,也指出了数据隐私、算法偏见等伦理问题,并展望了AI与人类医生协同工作的前景。 ####
33 0
|
20天前
|
机器学习/深度学习 人工智能 搜索推荐
探索人工智能在现代医疗中的革新应用
本文深入探讨了人工智能(AI)技术在医疗领域的最新进展,重点分析了AI如何通过提高诊断准确性、个性化治疗方案的制定以及优化患者管理流程来革新现代医疗。文章还讨论了AI技术面临的挑战和未来发展趋势,为读者提供了一个全面了解AI在医疗领域应用的视角。
26 0

相关产品

  • 人工智能平台 PAI
  • 下一篇
    DataWorks