大语言模型|人工智能领域中备受关注的技术

本文涉及的产品
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_基础版,每接口每天50万次
NLP自然语言处理_高级版,每接口累计50万次
简介: 大语言模型|人工智能领域中备受关注的技术

前言

(开源大语言模型)

伴随着 GPT-4 Turbo发布,当下人工领域技术再一次迎来了巨大变革,这也让我们再一次将视野聚焦在人工智能这一神奇的领域之上。作为人工智能领域中备受关注的技术之一,自Chatgpt爆火至今,大语言模型一词从未淡出过我们的视野,从某种意义来说,了解大语言模型是我们进入人工智能世界的第一步。那么今天我们就来聊聊关于大语言模型~

关于大语言模型

大语言模型是什么?

大语言模型(large language model):是一种基于深度学习的自然语言处理模型,用于生成自然语言文本。它通过学习大量的语料库中的语言规律和模式,能够理解自然语言的语法结构、词汇和语意,进而生成高质量、自然、连贯的文本。常见的大语言模型包括Google的BERTGPT-2,以及OpenAI的GPT-3等。大语言模型在文本生成、机器翻译、自然语言理解等领域有着广泛的应用。

在网络上我们很轻松就能找到关于大语言模型的详细介绍,而在我们详细的介绍大语言模型之前我们必须知道”机器学习是人工智能的一个子领域,深度学习是机器学习的分支,大语言模型是深度学习的分支“。

机器学习是一种人工智能的分支:它的目标是让计算机从数据中学习,能够自动地通过数据学习出一些规律,以便在面对新的数据时做出准确的预测或判断。通过机器学习,计算机可以从大量的数据中提取出有用的信息,从而处理更复杂的任务。

深度学习是一种机器学习的分支:通过构建深层神经网络来模拟人脑的神经网络,从而实现更高级别的抽象和模式识别。深度学习在图像识别、语音识别、自然语言处理、推荐系统等领域有着广泛的应用。

大语言模型是深度学习的应用之一:它基于深度学习技术,以海量语料库为训练数据,训练出的能够自动学习和模拟人类语言的模型。它可以被用于自然语言处理、文本生成、机器翻译、文本摘要、问答系统等多种任务中。

大语言模型有什么用?

在详细的了解了大语言模型的概念,有一个很现实的问题摆在了我们面前,它有什么用?这里我们以一亚马逊大型语言模型为例,看看它通常会被被用于那些领域?

文案写作

使用大语言模型来写作可以提高文案写作的效率和质量,但前提是需要了解目标受众、确定主题和关键词,运用创意,并对生成文本进行修正和优化。

知识库回答

利用预训练的大型语言模型,对用户提出的问题进行自然语言处理和信息检索,从知识库中匹配相关的答案并生成回答。通过该功能我们可以提高问答系统的精度和效率,为用户提供更加准确和有价值的答案。同时,大语言模型可以不断根据用户的反馈和输入数据进行微调和优化,使得回答功能逐渐变得更加智能化和个性化。

文本分类

大语言模型可以将输入的一段文本分成不同的类别,例如垃圾邮件、新闻、评论等。通过大语言模型我们可以处理大量的文本数据,可以自动提取关键特征,且在大多数情况下不需要人工干预。

代码生成

使用大语言模型,我们可以根据预定义的指令、数据或模板自动生成代码。这种技术可以提高软件开发效率和代码质量,减少开发人员的工作量和错误率。

AWS 如何通过 LLM 提供帮助?

AWS 为大型语言模型开发人员提供了多种可能性

Amazon Bedrock

Amazon Bedrock是Amazon Web Services(AWS)提供的一种开源软件,它可以帮助开发人员更轻松地构建区块链应用程序。它是一个基于Hyperledger Fabric的开发框架,它可以帮助团队更快地构建、测试和部署区块链应用程序。

Amazon SageMaker JumpStart

Amazon SageMaker JumpStart是一个全新的机器学习(ML)模板库,可帮助数据科学家、开发人员和企业解决方案架构师快速使用Amazon SageMaker构建、训练和部署ML模型。这个库提供了预训练模型、数据集、预处理脚本和笔记本模板等工具,能够快速启动机器学习项目,并通过自动调整超参数和自动模型调整提高模型准确性。通过使用Amazon SageMaker JumpStart,用户可以更快地获取模型并提高项目的成功率。


目录
相关文章
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能技术的探讨
人工智能的概念,人工智能的发展,人工智能的各种学派,人工智能的应用领域
342 4
|
7月前
|
人工智能 语音技术
推动人工智能技术和产业变革,啥是核心驱动力?生成式人工智能认证(GAI认证)揭秘答案
人工智能(AI)正以前所未有的速度重塑世界,其发展离不开领军人才与创新生态的支持。文章探讨了AI领军人才的核心特质及培养路径,强调构建产学研深度融合的创新生态,并通过教育变革与GAI认证提升全民AI素养,为技术与产业变革提供持续动力。这不仅是推动社会高质量发展的关键,也为个人与企业带来了更多机遇。
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
生成式人工智能的价值回归:重塑技术、社会与个体的发展轨迹
生成式人工智能(Generative AI)正以前所未有的速度重塑社会面貌。它从单一决策工具转变为创造性生产力引擎,推动知识生产、艺术创作与科学研究的发展。同时,其广泛应用引发社会生产力和生产关系的深刻变革,带来就业结构变化与社会公平挑战。此外,生成式AI还面临伦理法律问题,如透明性、责任归属及知识产权等。培生公司推出的生成式AI认证项目,旨在培养专业人才,促进技术与人文融合,助力技术可持续发展。总体而言,生成式AI正从工具属性向赋能属性升华,成为推动社会进步的新引擎。
|
7月前
|
人工智能 自然语言处理 API
MCP与A2A协议比较:人工智能系统互联与协作的技术基础架构
本文深入解析了人工智能领域的两项关键基础设施协议:模型上下文协议(MCP)与代理对代理协议(A2A)。MCP由Anthropic开发,专注于标准化AI模型与外部工具和数据源的连接,降低系统集成复杂度;A2A由Google发布,旨在实现不同AI代理间的跨平台协作。两者虽有相似之处,但在设计目标与应用场景上互为补充。文章通过具体示例分析了两种协议的技术差异及适用场景,并探讨了其在企业工作流自动化、医疗信息系统和软件工程中的应用。最后,文章强调了整合MCP与A2A构建协同AI系统架构的重要性,为未来AI技术生态系统的演进提供了方向。
1105 62
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
阿里云人工智能平台 PAI 开源 EasyDistill 框架助力大语言模型轻松瘦身
本文介绍了阿里云人工智能平台 PAI 推出的开源工具包 EasyDistill。随着大语言模型的复杂性和规模增长,它们面临计算需求和训练成本的障碍。知识蒸馏旨在不显著降低性能的前提下,将大模型转化为更小、更高效的版本以降低训练和推理成本。EasyDistill 框架简化了知识蒸馏过程,其具备多种功能模块,包括数据合成、基础和进阶蒸馏训练。通过数据合成,丰富训练集的多样性;基础和进阶蒸馏训练则涵盖黑盒和白盒知识转移策略、强化学习及偏好优化,从而提升小模型的性能。
|
8月前
|
人工智能 算法 搜索推荐
人工智能技术对未来就业的影响
人工智能大模型技术正在重塑全球就业市场,但其核心是"增强"而非"取代"人类工作。虽然AI在数据处理、模式识别等标准化任务上表现出色,但在创造力、情感交互和复杂决策等人类专属领域仍存在明显局限。各行业呈现差异化转型:IT领域人机协同编程成为常态,金融业基础分析岗位减少但复合型人才需求激增,医疗行业AI辅助诊断普及但治疗决策仍依赖医生,制造业工人转向技术管理,创意产业中人类聚焦高端设计。未来就业市场将形成人机协作新生态,要求个人培养创造力、情商等AI难以替代的核心能力,企业重构工作流程。AI时代将推动人类向更高价值的认知活动跃升,实现人机优势互补的协同发展。
1014 2
|
12月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解人工智能中的深度学习技术及其最新进展
深入理解人工智能中的深度学习技术及其最新进展
1320 33
|
11月前
|
机器学习/深度学习 人工智能 算法
人工智能平台年度技术趋势
阿里云智能集团研究员林伟在年度技术趋势演讲中,分享了AI平台的五大方面进展。首先,他介绍了大规模语言模型(LLM)训练中的挑战与解决方案,包括高效故障诊断和快速恢复机制。其次,探讨了AI应用和服务的普及化,强调通过优化调度降低成本,使AI真正惠及大众。第三,提出了GreenAI理念,旨在提高AI工程效率,减少能源消耗。第四,讨论了企业级能力,确保数据和模型的安全性,并推出硬件到软件的全面安全方案。最后,介绍了整合多项核心技术的Pai Prime框架,展示了阿里云在自主可控AI核心框架下的整体布局和发展方向。
|
12月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解人工智能中的深度学习技术及其最新进展
深入理解人工智能中的深度学习技术及其最新进展
531 14
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与深度学习:探索未来技术的无限可能
在21世纪,人工智能(AI)和深度学习已经成为推动科技进步的重要力量。本文将深入探讨这两种技术的基本概念、发展历程以及它们如何共同塑造未来的科技景观。我们将分析人工智能的最新趋势,包括自然语言处理、计算机视觉和强化学习,并讨论这些技术在现实世界中的应用。此外,我们还将探讨深度学习的工作原理,包括神经网络、卷积神经网络(CNN)和循环神经网络(RNN),并分析这些模型如何帮助解决复杂的问题。通过本文,读者将对人工智能和深度学习有更深入的了解,并能够预见这些技术将如何继续影响我们的世界。
295 7

热门文章

最新文章