C# | 凸包算法之Graham,快速找到一组点最外侧的凸多边形

简介: 这篇关于凸包算法的文章,本文使用C#和Graham算法来实现凸包算法。首先消除两个最基本的问题:什么是凸包呢?凸包是一个包围一组点的凸多边形。凸多边形是指多边形中的每个内角都小于180度的多边形。凸包算法有什么用呢?凸包算法的作用是找到这个凸多边形,并且使用最少的点来绘制出它的轮廓。凸包算法在计算机图形学、计算几何和机器学习等领域中有着广泛的应用。

image.png

C#实现凸包算法之Graham

@[toc]

前言

这篇关于凸包算法的文章,本文使用C#和Graham算法来实现凸包算法。
首先消除两个最基本的问题:

  1. 什么是凸包呢?
    凸包是一个包围一组点的凸多边形。凸多边形是指多边形中的每个内角都小于180度的多边形。
  2. 凸包算法有什么用呢?
    凸包算法的作用是找到这个凸多边形,并且使用最少的点来绘制出它的轮廓。凸包算法在计算机图形学、计算几何和机器学习等领域中有着广泛的应用。

示例代码

现在来看一下C#中的Graham算法是如何实现凸包算法的:

        /// <summary>
        /// 通过Graham算法获取围绕所有点的凸多边形的轮廓点<br/>
        /// </summary>
        /// <param name="points">点数组</param>
        /// <returns>轮廓点数组</returns>
        public static PointD[] GetConvexHullByGraham(PointD[] points)
        {
   
   
            if (points.Length < 3)
            {
   
   
                throw new ArgumentException("凸包算法需要至少3个点");
            }

            List<PointD> pointList = new List<PointD>(points);

            // 找到最下面的点
            PointD lowestPoint = pointList[0];
            for (int i = 1; i < pointList.Count; i++)
            {
   
   
                if (pointList[i].Y < lowestPoint.Y || (pointList[i].Y == lowestPoint.Y && pointList[i].X < lowestPoint.X))
                {
   
   
                    lowestPoint = pointList[i];
                }
            }

            // 将最下面的点作为起点,并按照极角排序其他点
            pointList.Remove(lowestPoint);
            pointList.Sort((p1, p2) =>
            {
   
   
                double angle1 = Math.Atan2(p1.Y - lowestPoint.Y, p1.X - lowestPoint.X);
                double angle2 = Math.Atan2(p2.Y - lowestPoint.Y, p2.X - lowestPoint.X);
                if (angle1 < angle2)
                {
   
   
                    return -1;
                }
                else if (angle1 > angle2)
                {
   
   
                    return 1;
                }
                else
                {
   
   
                    double distance1 = Math.Sqrt(Math.Pow(p1.X - lowestPoint.X, 2) + Math.Pow(p1.Y - lowestPoint.Y, 2));
                    double distance2 = Math.Sqrt(Math.Pow(p2.X - lowestPoint.X, 2) + Math.Pow(p2.Y - lowestPoint.Y, 2));
                    if (distance1 < distance2)
                    {
   
   
                        return -1;
                    }
                    else
                    {
   
   
                        return 1;
                    }
                }
            });

            // 使用栈来存储凸包的点
            Stack<PointD> hull = new Stack<PointD>();
            hull.Push(lowestPoint);
            hull.Push(pointList[0]);
            for (int i = 1; i < pointList.Count; i++)
            {
   
   
                PointD top = hull.Pop();
                while (hull.Any() && Cross(hull.Peek(), top, pointList[i]) <= 0)
                {
   
   
                    top = hull.Pop();
                }
                hull.Push(top);
                hull.Push(pointList[i]);
            }

            return hull.ToArray();
        }
AI 代码解读

上面代码中定义了一个名为GetConvexHullByGraham的静态方法,该方法接受一个PointD类型的数组作为输入参数,并返回一个PointD类型的数组,表示围绕所有点的凸多边形的轮廓点。

补充一下,关于示例中使用到的Cross方法和PointD类型的源代码如下:

        /// <summary>
        /// 计算从 a 到 b 再到 c 的叉积
        /// </summary>
        /// <returns>叉积值</returns>
        private static double Cross(PointD a, PointD b, PointD c)
        {
   
   
            return (b.X - a.X) * (c.Y - a.Y) - (b.Y - a.Y) * (c.X - a.X);
        }
AI 代码解读
    public struct PointD 
    {
   
   
        public PointD(double x, double y) 
        {
   
   
            X = x;
            Y = y;
        }

        public double X {
   
    get; set; }
        public double Y {
   
    get; set; }

        public override bool Equals(object obj)
        {
   
   
            if (obj == null || GetType() != obj.GetType())
            {
   
   
                return false;
            }

            PointD other = (PointD)obj;
            return X.Equals(other.X) && Y.Equals(other.Y);
        }
    }
AI 代码解读

实现思路

  1. 检查输入的点数是否小于3个,因为凸包算法需要至少3个点才能计算出凸多边形。
  2. 找到数组中最下面的点,并将其作为起点。
  3. 对其余的点按照它们与起点之间的极角进行排序(这里使用了Atan2函数来计算点与起点之间的极角)。如果极角相同,则按照点与起点之间的距离进行排序。
  4. 使用一个栈来存储凸包的点。首先将起点和第一个排序后的点放入栈中。
  5. 遍历其余的点,如果遍历到的点与栈顶的两个点所形成的向量不是一个“左拐”,就将栈顶的点弹出,直到遍历到的点形成的向量是一个“左拐”。
  6. 将所有剩余的点都压入栈中,这些点就是凸多边形的轮廓点。

测试结果

用于测试的数据点:

        static PointD[] points = new PointD[]
        {
   
      
                new PointD(0, 0),
                new PointD(0, 10),
                new PointD(10, 10),
                new PointD(10, 0),
                new PointD(1, 0),

                new PointD(4, 3),
                new PointD(5, 2),
                new PointD(6, 5),
                new PointD(4, 9),
                new PointD(4, 2),

                new PointD(5, 1),
                new PointD(6, 5),
                new PointD(1, 3),
                new PointD(7, 2),
                new PointD(8, 2),

                new PointD(6, 7),
                new PointD(8, 5),
                new PointD(9, 3),
                new PointD(7, 8),
                new PointD(8, 9),
        };
AI 代码解读

测试代码如下:

        [TestMethod]
        public void GetConvexHullByGraham()
        {
   
   
            Console.WriteLine("Graham 算法");
            PrintPoints(ConvexHull.GetConvexHullByGraham(points));
        }

        private void PrintPoints(PointD[] points)
        {
   
   
            Console.WriteLine(points.Select(p => $"  ({p.X}, {p.Y})").Join("\r\n"));
        }
AI 代码解读

执行结果如下:
image.png


结束语

通过本章的代码可以轻松实现Graham算法并找到一组点最外侧的凸多边形。如果您觉得本文对您有所帮助,请不要吝啬您的点赞和评论,提供宝贵的反馈和建议,让更多的读者受益。

目录
打赏
0
0
0
0
21
分享
相关文章
基于 C# 语言的 Dijkstra 算法在局域网内监控软件件中的优化与实现研究
本文针对局域网监控系统中传统Dijkstra算法的性能瓶颈,提出了一种基于优先队列和邻接表优化的改进方案。通过重构数据结构与计算流程,将时间复杂度从O(V²)降至O((V+E)logV),显著提升大规模网络环境下的计算效率与资源利用率。实验表明,优化后算法在包含1000节点、5000链路的网络中,计算时间缩短37.2%,内存占用减少21.5%。该算法适用于网络拓扑发现、异常流量检测、故障定位及负载均衡优化等场景,为智能化局域网监控提供了有效支持。
54 5
如何控制上网行为——基于 C# 实现布隆过滤器算法的上网行为管控策略研究与实践解析
在数字化办公生态系统中,企业对员工网络行为的精细化管理已成为保障网络安全、提升组织效能的核心命题。如何在有效防范恶意网站访问、数据泄露风险的同时,避免过度管控对正常业务运作的负面影响,构成了企业网络安全领域的重要研究方向。在此背景下,数据结构与算法作为底层技术支撑,其重要性愈发凸显。本文将以布隆过滤器算法为研究对象,基于 C# 编程语言开展理论分析与工程实践,系统探讨该算法在企业上网行为管理中的应用范式。
91 8
解析公司屏幕监控软件中 C# 字典算法的数据管理效能与优化策略
数字化办公的时代背景下,企业为维护信息安全并提升管理效能,公司屏幕监控软件的应用日益普及。此软件犹如企业网络的 “数字卫士”,持续记录员工电脑屏幕的操作动态。然而,伴随数据量的持续增长,如何高效管理这些监控数据成为关键议题。C# 中的字典(Dictionary)数据结构,以其独特的键值对存储模式和高效的操作性能,为公司屏幕监控软件的数据管理提供了有力支持。下文将深入探究其原理与应用。
58 4
员工上网行为监控软件中基于滑动窗口的C#流量统计算法解析​
在数字化办公环境中,员工上网行为监控软件需要高效处理海量网络请求数据,同时实时识别异常行为(如高频访问非工作网站)。传统的时间序列统计方法因计算复杂度过高,难以满足低延迟需求。本文将介绍一种基于滑动窗口的C#统计算法,通过动态时间窗口管理,实现高效的行为模式分析与流量计数。
74 2
基于 C# 深度优先搜索算法的局域网集中管理软件技术剖析
现代化办公环境中,局域网集中管理软件是保障企业网络高效运行、实现资源合理分配以及强化信息安全管控的核心工具。此类软件需应对复杂的网络拓扑结构、海量的设备信息及多样化的用户操作,而数据结构与算法正是支撑其强大功能的基石。本文将深入剖析深度优先搜索(Depth-First Search,DFS)算法,并结合 C# 语言特性,详细阐述其在局域网集中管理软件中的应用与实现。
84 3
内网实时监控中的 C# 算法探索:环形缓冲区在实时数据处理中的关键作用
本文探讨了环形缓冲区在内网实时监控中的应用,结合C#实现方案,分析其原理与优势。作为固定长度的循环队列,环形缓冲区通过FIFO机制高效处理高速数据流,具备O(1)时间复杂度的读写操作,降低延迟与内存开销。文章从设计逻辑、代码示例到实际适配效果展开讨论,并展望其与AI结合的潜力,为开发者提供参考。
66 2
|
29天前
|
公司电脑监控软件关键技术探析:C# 环形缓冲区算法的理论与实践
环形缓冲区(Ring Buffer)是企业信息安全管理中电脑监控系统设计的核心数据结构,适用于高并发、高速率与短时有效的多源异构数据处理场景。其通过固定大小的连续内存空间实现闭环存储,具备内存优化、操作高效、数据时效管理和并发支持等优势。文章以C#语言为例,展示了线程安全的环形缓冲区实现,并结合URL访问记录监控应用场景,分析了其在流量削峰、关键数据保护和高性能处理中的适配性。该结构在日志捕获和事件缓冲中表现出色,对提升监控系统效能具有重要价值。
50 1
基于 C# 的局域网计算机监控系统文件变更实时监测算法设计与实现研究
本文介绍了一种基于C#语言的局域网文件变更监控算法,通过事件驱动与批处理机制结合,实现高效、低负载的文件系统实时监控。核心内容涵盖监控机制选择(如事件触发机制)、数据结构设计(如监控文件列表、事件队列)及批处理优化策略。文章详细解析了C#实现的核心代码,并提出性能优化与可靠性保障措施,包括批量处理、事件过滤和异步处理等技术。最后,探讨了该算法在企业数据安全监控、文件同步备份等场景的应用潜力,以及未来向智能化扩展的方向,如文件内容分析、智能告警机制和分布式监控架构。
62 3
基于 C# 时间轮算法的控制局域网上网时间与实践应用
在数字化办公与教育环境中,局域网作为内部网络通信的核心基础设施,其精细化管理水平直接影响网络资源的合理配置与使用效能。对局域网用户上网时间的有效管控,已成为企业、教育机构等组织的重要管理需求。这一需求不仅旨在提升员工工作效率、规范学生网络使用行为,更是优化网络带宽资源分配的关键举措。时间轮算法作为一种经典的定时任务管理机制,在局域网用户上网时间管控场景中展现出显著的技术优势。本文将系统阐述时间轮算法的核心原理,并基于 C# 编程语言提供具体实现方案,以期深入剖析该算法在局域网管理中的应用逻辑与实践价值。
58 5
局域网上网记录监控的 C# 基数树算法高效检索方案研究
在企业网络管理与信息安全领域,局域网上网记录监控是维护网络安全、规范网络行为的关键举措。随着企业网络数据量呈指数级增长,如何高效存储和检索上网记录数据成为亟待解决的核心问题。基数树(Trie 树)作为一种独特的数据结构,凭借其在字符串处理方面的卓越性能,为局域网上网记录监控提供了创新的解决方案。本文将深入剖析基数树算法的原理,并通过 C# 语言实现的代码示例,阐述其在局域网上网记录监控场景中的具体应用。
71 7

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等