基于K-means Clustering聚类算法对电商商户进行级别划分(含Octave仿真)

简介: 基于K-means Clustering聚类算法对电商商户进行级别划分(含Octave仿真)

在从事电商做频道运营时,每到关键时间节点,大促前,季度末等等,我们要做的一件事情就是品牌池打分,更新所有店铺的等级。例如,所以的商户分入SKA,KA,普通店铺,新店铺这4个级别,对于不同级别的商户,会给予不同程度的流量扶持或广告策略。通常来讲,在一定时间段内,评估的维度可以有:UV,收订金额,好评率,销退金额,广告位点击率,转化率,pc端流量、手机端流量、客单价......等n多个维度,那么如何在这n多个维度中找到一种算法,来将我们的品牌划分到4个级别中呢?今天所讨论的K-means聚类算法是其中一种,基于某电商频道296个品牌的周销量真实数据,我们来进行品牌池划分。

从GNUOctave编译脚本示例,显示照明函数及其变化的图形

首先, K-means聚类算法可以描述为如下几步:

1、随机选取K个质心(centroids);

2、计算每个数据点距离K个质心的距离,选择距离最小的一个质心作为该数据点的所属组。例如,某数据点距离#3质心最近,那么它就属于#3组。

3、更新质心的坐标,将每个组的数据点坐标相加求平均值,得出新的质心位置并更新。

4、重复第二和第三步n次。

其中,K和n是提前指定的。

 

为了将K-means运行过程可视化,我们只取296的品牌的2个维度:UV与收订金额。主控代码如下:

%% ================= Part 1: load data ====================
fprintf('load parameters.\n\n');
pkg load io;
tmp = xlsread('data.xlsx');
id=tmp(:,1);
X=tmp(:,2:3);
%% =================== Part 2: set parameters ======================
K = 4;
max_iters = 10;
%% =================== Part 3: K-Means Clustering ======================
fprintf('\nRunning K-Means clustering on example dataset.\n\n');
initial_centroids = kMeansInitCentroids(X,K);
% Run K-Means algorithm. The 'true' at the end tells our function to plot
% the progress of K-Means
[centroids, idx] = runkMeans(X, initial_centroids, max_iters, true);
fprintf('\nK-Means Done.\n\n');

K-Means Clustering Algorithm核心代码:

function [centroids, idx] = runkMeans(X, initial_centroids, ...
                                      max_iters, plot_progress)
[m n] = size(X);
K = size(initial_centroids, 1);
centroids = initial_centroids;
previous_centroids = centroids;
idx = zeros(m, 1);
% Run K-Means
for i=1:max_iters
    % Output progress
    fprintf('K-Means iteration %d/%d...\n', i, max_iters);
    if exist('OCTAVE_VERSION')
        fflush(stdout);
    end
    % For each example in X, assign it to the closest centroid
    idx = findClosestCentroids(X, centroids);
    % Given the memberships, compute new centroids
    centroids = computeCentroids(X, idx, K);
end
end

选择最近质心的算法:

function idx = findClosestCentroids(X, centroids)
K = size(centroids, 1);
idx = zeros(size(X,1), 1);
m = size(X,1);
for(i = 1:m)
  distance = -1;
  index = -1;
  for(j=1:K)
    e = X(i,:)-centroids(j,:);
    d_tmp = e*e';
    if(distance == -1)
      distance = d_tmp;
      index = j;
    else
      if (d_tmp<distance)
        distance = d_tmp;
        index = j;
      endif
    endif
  endfor
  idx(i) = index;
endfor
end

重新计算质心及初始化质心的算法:

function centroids = computeCentroids(X, idx, K)
[m n] = size(X);
centroids = zeros(K, n);
num = zeros(K,1);
for(i = 1:m)
  c = idx(i,:);
  centroids(c,:) += X(i,:);
  num(c,:)++;
endfor
centroids = centroids./num;
function centroids = kMeansInitCentroids(X, K)
centroids = zeros(K, size(X, 2));
randidx = randperm(size(X, 1));
centroids = X(randidx(1:K), :);
end

经过十次迭代后,分组的结果如下:

在我本地的原始数据表格中,共有约20个维度来衡量每个店铺的运行情况,根据K-means聚类算法可以很轻松的将它们归类,虽然无法将其进行可视化操作,但原理与二维K-means完全相同。

相关文章
|
16天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
18天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
18天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
18天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
18天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
36 3
|
29天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
23天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA-PSO-SVM算法的混沌背景下微弱信号检测matlab仿真
本项目基于MATLAB 2022a,展示了SVM、PSO、GA-PSO-SVM在混沌背景下微弱信号检测中的性能对比。核心程序包含详细中文注释和操作步骤视频。GA-PSO-SVM算法通过遗传算法和粒子群优化算法优化SVM参数,提高信号检测的准确性和鲁棒性,尤其适用于低信噪比环境。
|
1月前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真
### 算法简介 1. **算法运行效果图预览**:展示算法效果,完整程序运行后无水印。 2. **算法运行软件版本**:Matlab 2017b。 3. **部分核心程序**:完整版代码包含中文注释及操作步骤视频。 4. **算法理论概述**: - **MSER**:用于检测显著区域,提取图像中稳定区域,适用于光照变化下的交通标志检测。 - **HOG特征提取**:通过计算图像小区域的梯度直方图捕捉局部纹理信息,用于物体检测。 - **SVM**:寻找最大化间隔的超平面以分类样本。 整个算法流程图见下图。
|
9天前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。
下一篇
无影云桌面