云原生数据仓库AnalyticDB MySQL湖仓版架构升级,持续释放技术红利!

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
云原生数据仓库AnalyticDB MySQL版,基础版 8ACU 100GB 1个月
简介: 云原生数据仓库AnalyticDB MySQL湖仓版架降价23%!持续提供高性价比的产品服务


【先打一波小广告】

阿里云AnalyticDB MySQL升级为湖仓一体架构,支持高吞吐离线处理和高性能在线分析,可无缝替换CDH/TDH/Databricks/Presto/Spark/Hive等。试用活动(5000ACU时+100GB存储)正在火热进行中,申请链接:https://free.aliyun.com/?searchKey=AnalyticDB%20MySQL,群号:33600023146



无论是数据湖中的非结构化或半结构化数据,还是数据库中的结构化数据,企业都可使用AnalyticDB MySQL版构建数据分析平台,完成高吞吐离线处理和高性能在线分析,快速将企业的关键指标实时可视化展示,完成高吞吐离线处理和高性能在线分析的同时,实现降本增效。

AnalyticDB MySQL湖仓版可无缝替换,CDH/TDH/Databricks/Presto/Spark/Hive等。


🎉 🎉 🎉2023年10月份以来湖仓版ACU(1C4G)单价全面下调23%160元/月下降到 140元/月0.37元/小时下降到 0.3元/小时


具体福利详见文末!

产品介绍


随着业务客户数增长、业务复杂度变高、存量数据积累等原因,数据规模从GB级增长到接近PB级,数据格式也从TP数据源为主的结构化数据,增加了很多半结构化(JSON等)、非结构化数据。客户通常会先在数据湖中做离线处理,对数据进行清洗、过滤、规整等预处理,再通过数据同步工具,将数据同步到数据仓库AnalyticDB中做在线分析。

数据一旦在多个系统间进行同步,就难免会因为数据同步工具的稳定性,带来数据一致性、时效性、数据冗余等问题。比如「数据工程师」在数据湖中看到的ADS表,和「数据分析师」在数据仓库中看到的ADS表的数据可能是不一样的。

阿里云数据仓库AnalyticDB MySQL版针对目前数据仓库和数据湖割裂的体系导致体验、系统复杂度、数据一致性和成本等各方面的挑战,在AnalyticDB MySQL作为数据仓库的基础上推出了AnalyticDB MySQL湖仓版,帮助客户可以同时使用数据仓库和数据湖中的数据自由平衡性价比,并且保持全过程同一体验和数据一致性。

阿里云数据仓库AnalyticDB版湖仓版在数仓版的能力基础上,从数据的采集、存储、计算和应用等方面做了全面的升级。湖仓版是基于计算存储分离架构打造的,同时具备低成本离线处理和高性能在线分析能力的湖仓一体版本,提供将源端数据实时同步到湖(Hudi on OSS)或仓(C-Store)的可视化配置能力。通过底层存储的一份全量数据,来支持离线和在线两种场景,避免因数据同步产生的数据一致性和时效性等问题。计算层支持标准接口的多语言可编程计算引擎Spark。同时湖仓版提供离线业务与在线业务的计算资源物理隔离的能力,能实现计算资源和存储资源按需弹性扩容。


下图是AnalyticDB MySQL湖仓版的技术架构图:

湖仓版支持从RDS/SLS/Kakfa等不同的数据源采集数据,让数据方便地进入湖仓存储。在存储和计算层,湖仓版同时支持自研引擎(「羲和计算引擎」和「玄武存储引擎」)和开源引擎(「Spark计算引擎」和「Hudi存储格式」),一方面借助开源的能力提供更丰富的数据分析场景,另一方面打通了自研和开源之间的互相访问,提供更一体化的体验。



做深自研:融合引擎满足多种场景


存储层:只需一份全量数据,满足离线在线场景

离线场景和在线场景对数据存储的诉求不一致,如何让一份全量数据同时实现高性能在线分析和低成本离线处理,是一大挑战。在线分析场景希望数据尽量在高性能存储介质上提高性能,离线处理希望数据尽量在低成本存储介质上降低存储成本。

为此,湖仓版首先将一份全量数据存在低成本高吞吐存储介质上,低成本离线处理场景直接读写低成本存储介质,降低数据存储和数据IO成本,保证高吞吐;其次将实时数据存在单独的存储IO节点(EIU)上,保证「行级」的数据实时性,同时对全量数据构建索引,并通过Cache能力对数据进行加速,满足百ms级高性能在线分析场景。

湖仓版的「一份数据」方案,很好地解决了因为数据同步带来的数据一致性和数据时效性问题。


计算层:融合计算引擎

在计算层,自研的「羲和计算引擎」MPP模式用来支撑数据的高性能在线分析。但这种流式计算模式并不适合离线处理低成本和高吞吐的特点。因此,湖仓版在「羲和分析计算引擎」中新增加了BSP模式,通过DAG进行任务切分,分批调度,满足有限资源下大数据量计算,支持计算数据落盘。进一步,由于考虑到MPP模式和BSP模式对普通用户存在较高的理解和学习成本,「羲和计算引擎」被升级成「羲和融合计算引擎」,同时提供MPP模式和BSP模式,并计划提供自动切换能力。


极致弹性:千核秒级弹性能力,完美贴合业务负载

云原生的最大优势就是弹性,湖仓版具备弹得起弹得快弹得好三个特点,贴合业务负载,保证查询性能。弹得起是指通过神龙+ECS/ECI构建的两层管控底座,提供更充足的库存保证,资源交付率超过95%;弹得快是通过资源池化、缓存加速等技术,弹性启动效率在10s内;弹得好是提供不同的弹性模型,满足客户的分时弹性和按需灵活弹性的业务场景。湖仓版在9月份推出了新的计算弹性模型Multi-Cluster,该弹性模型作用在AnalyticDB MySQL在线资源组内部,一个在线资源组由一个或者多个Cluster组成,相比普通在线资源组,在易用性、性能和成本上均有了较大提升,可有效应对查询的高并发实时分析场景。



拥抱开源:相比开源性能提升2.7倍

阿里云数据库仓库AnalyticDB MySQL湖仓版积极拥抱开源,满足已经生长在开源生态上的客户可以更平滑地使用湖仓版。外表类型,在Parquet/ORC/JSON/CSV等Append类型数据格式的基础上,新增支持批量更新的Hudi数据格式,帮助用户更好地低成本接入如CDC等数据。计算引擎,在做深「羲和融合计算引擎」的基础上,新增开源活跃度较高的Spark引擎,满足用户对于复杂离线处理和ML机器学习等需求。 AnalyticDB MySQL湖仓版提供了全托管的Spark能力,同开源Spark相比,具备如下优势:

 平滑迁移:采用开源Spark内核,接口和功能100%兼容;

 性能:通过数据缓存、向量化执行、下推优化等,相比开源同版本,10TB TPC-H测试场景下性能提升2.7倍;

成本:提交Spark Job才会触发资源的申请,满足业务波峰波谷对资源弹性的需求,降低资源成本;

高效入仓:使用Storage API替代传统JDBC方式,入仓速度提升5倍

生态增强:提供开箱即用的Notebook能力,当前支持SQL/Python/Scala语言来满足不同工程师的开发需求。拥抱开源不仅仅是简单集成Spark/Hudi/Delta等开源引擎,还包括湖仓库表元数据管理,以便多引擎共享,为此AnalyticDB还提供了统一元数据服务管理湖仓库表元数据,湖仓中的元数据/权限可互通,不同引擎可自由访问湖仓数据而无需重复创建元数据。对于湖仓数据,为屏蔽底层数据存储格式的差异,便于第三方引擎集成,AnalyticDB提供了面向内存列存格式Arrow的Lakehouse API服务,提供统一的读写能力,满足业务对仓存储有大吞吐的诉求,对于仓存储已经通过Arrow格式完成Spark引擎对接。



优势总结

阿里云数据库仓库AnalyticDB MySQL湖仓版的优势可以用程序员最熟悉的数字「1024」进行总结。

1: 是指一份数据,避免数据同步带来的数据一致性、时效性、冗余等问题;

0: 是指灵活弹性,用Serverless的方式贴合业务负载,保证查询性能,降低资源成本;

2: 是指湖仓版同时满足低成本离线处理和高性能在线分析;

4: 是指4个统一,统一计费单位、统一数据管道、统一数据管理、统一数据访问。


近期大降价福利

云原生数据仓库AnalyticDB MySQL版(湖仓版),2023年10月开始,ACU(1C4G)单价全面下调23%: 包年包月ACU单价 从160元/月下降至140元/月按量付费ACU单价 从0.37元/小时下降至0.3元/小时新版定价请点击文末「阅读原文」查看湖仓版3.0定价文档,如有疑问,欢迎入群咨询,钉钉搜索群号:33600023146



👇👇👇



 


相关实践学习
AnalyticDB MySQL海量数据秒级分析体验
快速上手AnalyticDB MySQL,玩转SQL开发等功能!本教程介绍如何在AnalyticDB MySQL中,一键加载内置数据集,并基于自动生成的查询脚本,运行复杂查询语句,秒级生成查询结果。
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
相关文章
|
28天前
|
Kubernetes Cloud Native 微服务
探索云原生技术:容器化与微服务架构的融合之旅
本文将带领读者深入了解云原生技术的核心概念,特别是容器化和微服务架构如何相辅相成,共同构建现代软件系统。我们将通过实际代码示例,探讨如何在云平台上部署和管理微服务,以及如何使用容器编排工具来自动化这一过程。文章旨在为开发者和技术决策者提供实用的指导,帮助他们在云原生时代中更好地设计、部署和维护应用。
|
2月前
|
运维 Kubernetes Cloud Native
云原生技术:容器化与微服务架构的完美结合
【10月更文挑战第37天】在数字化转型的浪潮中,云原生技术以其灵活性和高效性成为企业的新宠。本文将深入探讨云原生的核心概念,包括容器化技术和微服务架构,以及它们如何共同推动现代应用的发展。我们将通过实际代码示例,展示如何在Kubernetes集群上部署一个简单的微服务,揭示云原生技术的强大能力和未来潜力。
|
21天前
|
监控 安全 API
使用PaliGemma2构建多模态目标检测系统:从架构设计到性能优化的技术实践指南
本文详细介绍了PaliGemma2模型的微调流程及其在目标检测任务中的应用。PaliGemma2通过整合SigLIP-So400m视觉编码器与Gemma 2系列语言模型,实现了多模态数据的高效处理。文章涵盖了开发环境构建、数据集预处理、模型初始化与配置、数据加载系统实现、模型微调、推理与评估系统以及性能分析与优化策略等内容。特别强调了计算资源优化、训练过程监控和自动化优化流程的重要性,为机器学习工程师和研究人员提供了系统化的技术方案。
142 77
使用PaliGemma2构建多模态目标检测系统:从架构设计到性能优化的技术实践指南
|
2月前
|
运维 持续交付 API
从零构建微服务架构:一次深度技术探索之旅####
【10月更文挑战第28天】 本文记录了作者在从零开始构建微服务架构过程中的深刻技术感悟,通过实战案例详细剖析了微服务设计、开发、部署及运维中的关键要点与挑战。文章首先概述了微服务架构的核心理念及其对企业IT架构转型的重要性,随后深入探讨了服务拆分策略、API网关选型、服务间通信协议选择、容器化部署(Docker+Kubernetes)、以及持续集成/持续部署(CI/CD)流程的设计与优化。最后,分享了在高并发场景下的性能调优经验与故障排查心得,旨在为读者提供一套可借鉴的微服务架构实施路径。 ####
66 3
|
2月前
|
存储 分布式计算 关系型数据库
架构/技术框架调研
本文介绍了微服务间事务处理、调用、大数据处理、分库分表、大文本存储及数据缓存的最优解决方案。重点讨论了Seata、Dubbo、Hadoop生态系统、MyCat、ShardingSphere、对象存储服务和Redis等技术,提供了详细的原理、应用场景和优缺点分析。
|
27天前
|
运维 Cloud Native 持续交付
云原生技术深度探索:重塑现代IT架构的无形之力####
本文深入剖析了云原生技术的核心概念、关键技术组件及其对现代IT架构变革的深远影响。通过实例解析,揭示云原生如何促进企业实现敏捷开发、弹性伸缩与成本优化,为数字化转型提供强有力的技术支撑。不同于传统综述,本摘要直接聚焦于云原生技术的价值本质,旨在为读者构建一个宏观且具体的技术蓝图。 ####
|
2月前
|
Cloud Native 持续交付 云计算
云原生技术在现代IT架构中的转型力量####
本文深入剖析了云原生技术的精髓,探讨其在现代IT架构转型中的关键作用与实践路径。通过具体案例分析,展示了云原生如何赋能企业实现更高效的资源利用、更快的迭代速度以及更强的系统稳定性,为读者提供了一套可借鉴的实施框架与策略。 ####
26 0
|
2月前
|
运维 Kubernetes Docker
深入理解容器化技术及其在微服务架构中的应用
深入理解容器化技术及其在微服务架构中的应用
65 1
|
2月前
|
监控 Java 微服务
从零构建微服务架构:一次深度技术探索之旅####
本文作为一篇深度技术分享,引领读者踏上自底向上搭建微服务架构的征途,旨在通过实战经验剖析,揭示微服务转型背后的技术挑战与解决方案。不同于常规摘要仅概述内容,本文摘要将直接以故事化手法,简述作者从单体应用困境出发,逐步迈向微服务化的心路历程,涵盖关键决策点、技术选型考量及实践收获,激发读者对微服务架构设计与实现的浓厚兴趣。 ####
|
2月前
|
Cloud Native 持续交付 云计算
深入理解云原生技术及其在现代IT架构中的应用
在数字化浪潮的推动下,云原生技术已成为企业转型的关键。本文将通过浅显易懂的语言和生动的比喻,带领读者探索云原生的核心概念、优势以及如何在企业中实现云原生架构。我们将一起揭开云原生的神秘面纱,了解它如何助力企业快速适应市场变化,提升业务的灵活性和创新能力。

相关产品

  • 云原生数据仓库AnalyticDB MySQL版
  • 推荐镜像

    更多