汽车租聘管理与推荐系统Python+Django网页界面+协同过滤推荐算法

简介: 汽车租聘管理与推荐系统Python+Django网页界面+协同过滤推荐算法

一、介绍

汽车租聘管理与推荐系统。本系统使用Python作为主要编程语言,前端采用HTML、CSS、BootStrap等技术搭建前端界面,后端采用Django框架处理用户的请求。创新点:使用协同过滤推荐算法实现对当前用户个性化推荐。
其主要功能如下:

  • 系统分为管理员和用户两个角色
  • 用户可以登录、注册、查看车辆信息、发布评论、对车辆进行评分、收藏汽车、支付租聘、查看订单、编辑个人信息、查看排行榜、查看推荐界面
  • 算法应用:系统使用协同过滤推荐算法基于用户评分信息计算相似度进行推荐
  • 管理员可以对用户和车辆信息进行管理

    二、系统部分功能效果图片展示

    img_11_26_18_43_47

img_11_26_18_43_40

img_11_26_18_44_00

img_11_26_18_44_11

三、演示视频 and 代码 and 安装

地址:https://www.yuque.com/ziwu/yygu3z/gfoectfz8gwwlef7

四、协同过滤算法介绍

协同过滤算法是一种用于构建推荐系统的技术,它通过分析用户的喜好和行为模式来预测用户可能喜欢的产品或服务。想象一下,你和朋友们一起去餐厅吃饭,你不知道点什么好,但如果你知道朋友们喜欢哪些菜,那么你可能会根据他们的选择来决定自己的点餐。协同过滤算法就是基于这样的思想。
这个算法主要有两种类型:基于用户的协同过滤和基于物品的协同过滤。

  1. 基于用户的协同过滤:这种方法会找到与你口味相似的用户,然后根据这些“口味相似”的用户喜欢的东西来给你推荐。就像是你的朋友推荐给你他们喜欢的菜肴。
  2. 基于物品的协同过滤:这种方法则是看物品之间的相似度。比如说,如果你喜欢了一部电影,系统会根据这部电影的特点,推荐其他类似的电影给你。

接下来,我会用Python编写一个简单的基于用户的协同过滤算法示例。这个例子将使用一个假设的数据集来演示如何根据用户间的相似度来推荐物品。

import numpy as np

# 示例数据集:用户及其对电影的评分(1-5分)
ratings = {
   
   
    'Alice': {
   
   'Titanic': 3, 'Avatar': 4, 'Forrest Gump': 5},
    'Bob': {
   
   'Titanic': 5, 'Avatar': 3},
    'Carol': {
   
   'Titanic': 4, 'Forrest Gump': 3},
    'Dave': {
   
   'Avatar': 5, 'Forrest Gump': 4},
}

def cosine_similarity(user1, user2):
    """
    计算两个用户之间的余弦相似度。
    相似度范围从-1(完全不相似)到1(完全相同)。
    """
    # 取两个用户都评分过的电影
    common_movies = set(ratings[user1]).intersection(set(ratings[user2]))

    # 如果没有共同电影,则相似度为0
    if not common_movies:
        return 0

    # 分别计算两个用户对共同电影的评分向量
    user1_ratings = np.array([ratings[user1][movie] for movie in common_movies])
    user2_ratings = np.array([ratings[user2][movie] for movie in common_movies])

    # 计算余弦相似度
    return np.dot(user1_ratings, user2_ratings) / (np.linalg.norm(user1_ratings) * np.linalg.norm(user2_ratings))

def recommend(user):
    """
    基于用户的协同过滤推荐电影。
    找到与目标用户最相似的用户,推荐他们喜欢但目标用户未看过的电影。
    """
    # 计算目标用户与其他所有用户的相似度
    similarities = {
   
   other_user: cosine_similarity(user, other_user) for other_user in ratings if other_user != user}

    # 找到最相似的用户
    most_similar_user = max(similarities, key=similarities.get)

    # 推荐最相似用户喜欢但目标用户未看过的电影
    recommendations = set(ratings[most_similar_user]) - set(ratings[user])

    return recommendations

# 为Alice推荐电影
recommendations_for_alice = recommend('Alice')
recommendations_for_alice
目录
相关文章
|
2月前
|
算法 前端开发 数据处理
小白学python-深入解析一位字符判定算法
小白学python-深入解析一位字符判定算法
52 0
|
2月前
|
机器学习/深度学习 算法 搜索推荐
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【10月更文挑战第4天】在大数据时代,算法效率至关重要。本文从理论入手,介绍时间复杂度和空间复杂度两个核心概念,并通过冒泡排序和快速排序的Python实现详细分析其复杂度。冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1);快速排序平均时间复杂度为O(n log n),空间复杂度为O(log n)。文章还介绍了算法选择、分而治之及空间换时间等优化策略,帮助你在大数据挑战中游刃有余。
87 4
|
7天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
116 55
|
2月前
|
机器学习/深度学习 缓存 算法
Python算法设计中的时间复杂度与空间复杂度,你真的理解对了吗?
【10月更文挑战第4天】在Python编程中,算法的设计与优化至关重要,尤其在数据处理、科学计算及机器学习领域。本文探讨了评估算法性能的核心指标——时间复杂度和空间复杂度。通过详细解释两者的概念,并提供快速排序和字符串反转的示例代码,帮助读者深入理解这些概念。同时,文章还讨论了如何在实际应用中平衡时间和空间复杂度,以实现最优性能。
78 6
|
22天前
|
搜索推荐 Python
利用Python内置函数实现的冒泡排序算法
在上述代码中,`bubble_sort` 函数接受一个列表 `arr` 作为输入。通过两层循环,外层循环控制排序的轮数,内层循环用于比较相邻的元素并进行交换。如果前一个元素大于后一个元素,就将它们交换位置。
125 67
|
22天前
|
存储 搜索推荐 Python
用 Python 实现快速排序算法。
快速排序的平均时间复杂度为$O(nlogn)$,空间复杂度为$O(logn)$。它在大多数情况下表现良好,但在某些特殊情况下可能会退化为最坏情况,时间复杂度为$O(n^2)$。你可以根据实际需求对代码进行调整和修改,或者尝试使用其他优化策略来提高快速排序的性能
115 61
|
16天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
98 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
2天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
23天前
|
存储 算法 搜索推荐
Python 中数据结构和算法的关系
数据结构是算法的载体,算法是对数据结构的操作和运用。它们共同构成了计算机程序的核心,对于提高程序的质量和性能具有至关重要的作用
|
22天前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
下一篇
DataWorks