数据结构-单链表

简介: 数据结构-单链表

1 链表的概念及结构

概念:链表是一种物理存储结构上非连续、非顺序的存储结构,数据元素的逻辑顺序是通过链表中的指针链接次序实现的 。

从以上图片可以看出:

1.链式结构在逻辑上是连续的,但在物理上不一定是连续的。

2.现实中的节点一般是在堆上申请出来的。

3.从堆上申请的空间,是按照一定的策略来分配的,两次申请的空间可能连续,可能不连续。

2 链表的分类

实际中链表的结构非常多样,以下情况组合起来就有8种链表结构

2.1单向或双向

2.2带头或者不带头


2.3循环或者非循环


虽然有这么多的链表的结构,但是我们实际中最常用还是两种结构:

1. 无头单向非循环链表:结构简单,一般不会单独用来存数据。实际中更多是作为其他数据结构的子结构,如哈希桶、图的邻接表等等。另外这种结构在笔试面试中出现很多。

2. 带头双向循环链表:结构最复杂,一般用在单独存储数据。实际中使用的链表数据结构,都是带头双向循环链表。另外这个结构虽然结构复杂,但是使用代码实现以后会发现结构会带来很多优势,实现反而简单了,后面我们代码实现了就知道了。

3 单向无头链表的实现

在头文件中包含一些函数的声明。

因为每个节点都是一个结构体,所以每个节点都要存放一个结构体的指针,指向下一个节点。

typedef int SLTDataType;
typedef struct SListNode
{
  SLTDataType data;
  struct SListNode* next;
}SLTNode;
SLTNode* BuyListBNode(SLTDataType x);
void PrintSList(SLTNode* phead);
void SLTPushBcak(SLTNode** pphead,SLTDataType x);//尾插
void SLTPushFront(SLTNode** pphead, SLTDataType x);//头插
void SLTPopback(SLTNode** pphead);//尾删
void SLTPopFront(SLTNode** pphead,SLTDataType x);//头删
void SLTFind(SLTNode* pphead,SLTDataType x);//查找
//在pos之前插入x
void SLTInsert(SLTNode** pphead, SLTNode* pos, SLTDataType x);
//在pos之后插入x
void SLTInsertAfter(SLTNode** pphead, SLTNode* pos, SLTDataType x);
//删除pos位置
void SLTErase(SLTNode** pphead, SLTNode* pos);
//删除pos的后一个位置
void SLTEraseAfter(SLTNode* pos);

3.1打印链表

打印链表首先要遍历链表,那么循环的条件就是走到空。所以我们创建一个临时变量cur代替头节点用来遍历,这样就可以不用动头节点,打印就是将节点中的数据打印出来,所以先将各个节点的数据打印出来,再指向下一个节点,需要注意的是next就是下一个节点的地址,所以将cur->next赋给cur就可以拿到下一个节点的地址了,拿到地址就可以继续访问下一个节点了。

void PrintSList(SLTNode* phead)
{
  SLTNode* cur = phead;
  while (cur)
  {
    printf("%d->", cur->data);
    cur = cur->next;
  }
  printf("NULL\n");
}

3.2创建节点

这里malloc一个节点出来就行了,然后判断是否malloc成功,将需要的数据存进data中就行了,然后将next置为NULL,然后返回这个节点。

SLTNode* BuyListBNode(SLTDataType x)
{
  SLTNode* newnode = (SLTNode*) malloc(sizeof(SLTNode));
  if (newnode == NULL)
  {
  perror("malloc fail");
  exit(-1);
  }
  newnode->data = x;
  newnode->next = NULL;
  return newnode;
}

3.3尾插节点

这个函数的第一个参数是一个二级指针,目的是为了修改结构体,尾插节点首先需要创建一个节点,然后·判断一下当前链表是否为空,如果为空则将这个节点设置为头节点,所以解引用这个二级指针,拿到一级指针的地址,就可以修改了。如果不为空,则创建一个临时变量来保存头节点的地址,然后使用这个变量来遍历链表找到尾节点,循环的结束条件就是tail的next为空,因为尾节点的next是NULL,循环结束之后tail就走到了尾节点的位置,然后将新节点赋给tail的next即可。

void SLTPushBcak(SLTNode** pphead, SLTDataType x)
{
  SLTNode* newnode = BuyListBNode(x);
  if (*pphead == NULL)
  {
  *pphead = newnode;
  }
  else
  {
  SLTNode* tail = *pphead;
  while (tail->next != NULL)
  {
    tail = tail->next;
  }
  tail->next = newnode;
  }
}

3.4头插节点

尾插节点还是需要创建一个节点,然后将这个节点的next指向这个头节点,但是头插之后头节点就是新插入的这个节点,所以需要使用二级指针,最后将新节点newnode赋给*pphead,这样头节点就更新了。

void SLTPushFront(SLTNode** pphead, SLTDataType x)
{
  SLTNode* newnode = BuyListBNode(x);
  newnode->next = *pphead;
  *pphead = newnode;
}

3.4尾删节点

尾删需要分很多种情况:

1.没有节点,这种情况就直接暴力检查,没有节点是删除不了的,直接assert即可。

2.一个节点,如果是一个节点的话,这个节点的next一定是NULL,所以使用if判断*pphead->next是否为NULL,如果是的话直接free掉这个节点然后置为空就行了。

3.如果是多个节点的话创建一个临时变量来遍历链表找到尾,需要注意的是,这个循环的结束条件是tail->next->next为空。下面这段代码就是错误的,因为free(tail)的本质是将tail指向的节点free,再将tail置为空相当于给tail赋值0x00000000,局部变量出了作用域就销毁了,但是前一个节点还是野指针,next虽然还是指向这个节点,但是这个节点已经free了。所以解决的方法就是找到tail的前一个节点,然后free掉tail->next,再置空。

正确的方法:

void SLTPopback(SLTNode** pphead)
{
  assert(*pphead);
  //一个节点
  if ((*pphead)->next = NULL)
  {
    free(*pphead);
    *pphead = NULL;
  }
  else//多个节点
  {
    SLTNode* tail = *pphead;
    while (tail->next->next != NULL)
    {
      tail = tail->next;
    }
    free(tail->next);
    tail->next = NULL;
  }
}


3.5头删节点

头删也需要用到二级指针,然后暴力检查链表是否为空,不为空则创建一个变量newnode来保存头节点的next,然后free掉头节点,再将newnode赋给*pphead。

void SLTPopFront(SLTNode** pphead)
{
  assert(pphead);
  SLTNode* newhead = (*pphead)->next;
  free(*pphead);
  *pphead = newhead;
}

3.6查找节点

这个函数很简单,找到data就行,然后返回节点。

SLTNode* SLTFind(SLTNode* pphead, SLTDataType x)
{
  SLTNode* cur = pphead;
  while (cur != NULL)
  {
    if (cur->data == x)
    {
      return cur;
    }
    cur = cur->next;
  }
  return NULL;
}

3.6在pos位置之前插入节点

pos的位置也需要分情况:

1.暴力检查

2.如果是头插,直接调用头插函数。

3.正常情况,创建一个结构体变量来遍历链表寻找pos节点,但是循环的结束条件设置成pre->next=pos最合适,因为我们需要保存pos的前一个节点,所以循环结束后pre就是pos的前一个节点,此时创建一个需要插入的节点newnode,将pre的next指向newnode,再将newnode的next指向pos,就完成链接了。


void SLTInsert(SLTNode** pphead, SLTNode* pos, SLTDataType x)
{
  assert(pos);
  if (*pphead == pos)
  {
    SLTPopFront(pphead,x);
  }
  else
  {
    SLTNode* pre = *pphead;
    while (pre->next != pos)
    {
      pre = pre->next;
    }
    SLTNode* newnode = BuyListBNode(x);
    pre->next = newnode;
    newnode->next = pos; 
  }
}

3.7在pos位置之后插入节点

首先暴力检查,再创建一个新节点newnode,插入需要注意的是以下这种写法是错误的,因为当我们将pos的next指向newnode的时候,就与后面的节点完全断开了,然后newnode的next又指向pos的next相当于形成了一个死循环。正确的方法应该是pos的next指向newnode的next,相当于先将newnode的next指向pos的后一个节点形成newnode的尾部链接,再将pos的next指向newnode完成newnode的头部链接。



void SLTInsertAfter(SLTNode* pos, SLTDataType x)
{
  assert(pos);
  SLTNode* newnode = BuyListBNode(x);
  newnode->next = pos->next;
  pos->next = newnode;
}

3.8删除pos位置的节点

首先暴力检查,再判断pos是不是头删,正常删除就是创建一个变量遍历链表,pos的next为空作为循环的结束条件,循环结束之后pre就是pos的前一个节点,这个时候将pre的next指向pos的next也就是pos的下一个节点就行了,然后frre掉pos,这时候就不需要置空了。

void SLTErase(SLTNode** pphead, SLTNode* pos)
{
  assert(pos);
  if (pos == *pphead)
  {
    SLTPopFront(pphead);
  }
  else
  {
    SLTNode* pre = *pphead;
    while (pre->next != pos)
    {
      pre = pre->next;
    }
    pre->next = pos->next;
    free(pos);
  }
}

3.9删除pos位置之后的节点

首先暴力检查,然后再检查是否为尾节点。创建一个变量posNext保存pos的下一个节点,然后即将pos的下一个节点指向pos的下下个节点即可。然后free掉posNext。

void SLTEraseAfter(SLTNode* pos)
{
  assert(pos);
  assert(pos->next);//检查是否是尾节点
  SLTNode* posNext = pos->next;
  pos->next = posNext->next;
  free(posNext);
}


相关文章
|
6天前
【数据结构】单链表(长期维护)(1)
【数据结构】单链表(长期维护)(1)
|
3月前
|
存储
[数据结构]——单链表——超详解
[数据结构]——单链表——超详解
|
11天前
|
存储
【数据结构】单链表-->详细讲解,后赋源码
【数据结构】单链表-->详细讲解,后赋源码
15 4
|
1天前
|
算法 索引
【初阶数据结构篇】单链表算法题进阶
深拷贝应该正好由 n 个全新节点组成,其中每个新节点的值都设为其对应的原节点的值。
|
6天前
【数据结构】单链表(长期维护)(2)
【数据结构】单链表(长期维护)(2)
|
1月前
|
存储 DataX C语言
【数据结构】单链表
数据结构中的单链表
18 0
【数据结构】单链表
|
2月前
|
存储 测试技术
【数据结构】最最基础的链式结构——单链表,还不会你就吃大亏了!
【数据结构】最最基础的链式结构——单链表,还不会你就吃大亏了!
30 5
|
2月前
|
算法 程序员 数据处理
【数据结构与算法】使用单链表实现队列:原理、步骤与应用
【数据结构与算法】使用单链表实现队列:原理、步骤与应用
|
2月前
|
算法 C语言
【数据结构与算法 经典例题】返回单链表的倒数第 k 个节点
【数据结构与算法 经典例题】返回单链表的倒数第 k 个节点
|
2月前
|
存储 算法 C语言
【数据结构与算法】深入理解 单链表
【数据结构与算法】深入理解 单链表