C++前缀和算法的应用:从仓库到码头运输箱子原理、源码、测试用例

简介: C++前缀和算法的应用:从仓库到码头运输箱子原理、源码、测试用例

本文涉及的基础知识点

C++算法:前缀和、前缀乘积、前缀异或的原理、源码及测试用例 包括课程视频

双指针

单调双向队列

题目

你有一辆货运卡车,你需要用这一辆车把一些箱子从仓库运送到码头。这辆卡车每次运输有 箱子数目的限制 和 总重量的限制 。

给你一个箱子数组 boxes 和三个整数 portsCount, maxBoxes 和 maxWeight ,其中 boxes[i] = [portsi, weighti] 。

portsi 表示第 i 个箱子需要送达的码头, weightsi 是第 i 个箱子的重量。

portsCount 是码头的数目。

maxBoxes 和 maxWeight 分别是卡车每趟运输箱子数目和重量的限制。

箱子需要按照 数组顺序 运输,同时每次运输需要遵循以下步骤:

卡车从 boxes 队列中按顺序取出若干个箱子,但不能违反 maxBoxes 和 maxWeight 限制。

对于在卡车上的箱子,我们需要 按顺序 处理它们,卡车会通过 一趟行程 将最前面的箱子送到目的地码头并卸货。如果卡车已经在对应的码头,那么不需要 额外行程 ,箱子也会立马被卸货。

卡车上所有箱子都被卸货后,卡车需要 一趟行程 回到仓库,从箱子队列里再取出一些箱子。

卡车在将所有箱子运输并卸货后,最后必须回到仓库。

请你返回将所有箱子送到相应码头的 最少行程 次数。

示例 1:

输入:boxes = [[1,1],[2,1],[1,1]], portsCount = 2, maxBoxes = 3, maxWeight = 3

输出:4

解释:最优策略如下:

  • 卡车将所有箱子装上车,到达码头 1 ,然后去码头 2 ,然后再回到码头 1 ,最后回到仓库,总共需要 4 趟行程。
    所以总行程数为 4 。
    注意到第一个和第三个箱子不能同时被卸货,因为箱子需要按顺序处理(也就是第二个箱子需要先被送到码头 2 ,然后才能处理第三个箱子)。
    示例 2:
    输入:boxes = [[1,2],[3,3],[3,1],[3,1],[2,4]], portsCount = 3, maxBoxes = 3, maxWeight = 6
    输出:6
    解释:最优策略如下:
  • 卡车首先运输第一个箱子,到达码头 1 ,然后回到仓库,总共 2 趟行程。
  • 卡车运输第二、第三、第四个箱子,到达码头 3 ,然后回到仓库,总共 2 趟行程。
  • 卡车运输第五个箱子,到达码头 2 ,回到仓库,总共 2 趟行程。
    总行程数为 2 + 2 + 2 = 6 。
    示例 3:
    输入:boxes = [[1,4],[1,2],[2,1],[2,1],[3,2],[3,4]], portsCount = 3, maxBoxes = 6, maxWeight = 7
    输出:6
    解释:最优策略如下:
  • 卡车运输第一和第二个箱子,到达码头 1 ,然后回到仓库,总共 2 趟行程。
  • 卡车运输第三和第四个箱子,到达码头 2 ,然后回到仓库,总共 2 趟行程。
  • 卡车运输第五和第六个箱子,到达码头 3 ,然后回到仓库,总共 2 趟行程。
    总行程数为 2 + 2 + 2 = 6 。
    示例 4:
    输入:boxes = [[2,4],[2,5],[3,1],[3,2],[3,7],[3,1],[4,4],[1,3],[5,2]], portsCount = 5, maxBoxes = 5, maxWeight = 7
    输出:14
    解释:最优策略如下:
  • 卡车运输第一个箱子,到达码头 2 ,然后回到仓库,总共 2 趟行程。
  • 卡车运输第二个箱子,到达码头 2 ,然后回到仓库,总共 2 趟行程。
  • 卡车运输第三和第四个箱子,到达码头 3 ,然后回到仓库,总共 2 趟行程。
  • 卡车运输第五个箱子,到达码头 3 ,然后回到仓库,总共 2 趟行程。
  • 卡车运输第六和第七个箱子,到达码头 3 ,然后去码头 4 ,然后回到仓库,总共 3 趟行程。
  • 卡车运输第八和第九个箱子,到达码头 1 ,然后去码头 5 ,然后回到仓库,总共 3 趟行程。
    总行程数为 2 + 2 + 2 + 2 + 3 + 3 = 14 。

提示:

1 <= boxes.length <= 105

1 <= portsCount, maxBoxes, maxWeight <= 105

1 <= portsi <= portsCount

1 <= weightsi <= maxWeight

可理解行强的解法

如果有多种运输的boxs[0,i)的方式,只需要保留行程最少的方式,且只需要记录最小行程,此值用m_vRet[i]记录。分成两步:第一步,运输box[0,j),第二步运输[j,i)。一次可以运输完成,可以看成第一步是box[0,0)。枚举i,j的时间复杂度都是O(n),总时间复杂度是O(n*n)。

利用前缀和计算[j,i)的箱子总重量

vWeightSum[i],记录了boxs[0,i)的重中立,vWeightSum[i]-vWeightSum[j]。

利用前缀和计算[i,j)需要单独下车的次数

vDownSum[i]记录[0,i)需要单独下车的次数。vDown[j]-vDownSum[i]。和前面的箱子不同,则需要单独下车。

优化枚举

m_vRet[i] = min(…,X) X=m_vRet[j]+1 + 1 + vDown[j+1,i)。 1+1 表示返程和下第一箱子,从第二个箱子起要计算要单独下。X = m_vRet[j]+1+1+vDown[i] - vDown[j+1] ,令 Y= m_vRet[j]-vDow[j+1],则X=Y + 2 + vDown[i] ,显然Y可以提前计算。每次处理完i,将Y记录到setPre中。setPre对应的索引为[left,i),如果[left,i)超量或超重,则left++,并更新setPre。

时间复杂度

枚举i,时间复杂度。二分查找setPre,时间复杂度O(logn),总时间复杂度O(nlogn)。

核心代码

class Solution {
public:
int boxDelivering(vector<vector>& boxes, int portsCount, int maxBoxes, int maxWeight) {
m_c = boxes.size();
m_vRet.resize(m_c+1);//记录boxes[0,i) 需的最小行程数
vector vWeightSum = { 0 };//箱子重量前缀和
for (const auto& v : boxes)
{
vWeightSum.emplace_back(v[1] + vWeightSum.back());
}
vector vDownSum = { 0,0 };//假定不是本车的第一个箱子,卸货需要的次数
for (int i = 1; i < m_c; i++)
{
vDownSum.emplace_back(vDownSum.back() + (boxes[i][0] != boxes[i-1][0]));
}
std::multiset setPre = { 0 }; //记录可以作为前一趟的最小行程数-vDownSum[i + 1]
int left = 0;//[left,i)是上一趟的行程
for (int i = 1; i <= m_c; i++)
{
// [left,i)为空,不会超重,也不会超量。所以无需判断是否为空
while ((i - left > maxBoxes) || (vWeightSum[i] - vWeightSum[left] > maxWeight))
{
//如果[left,i)超重或超亮
const int tmp = m_vRet[left ] - vDownSum[left+1 ];
setPre.erase(setPre.find(tmp));
left++;
}
m_vRet[i ] = *setPre.begin() + 2 + vDownSum[i] ;
if (i + 1 <= m_c)
{
setPre.emplace(m_vRet[i] - vDownSum[i + 1]);
}
}
return m_vRet.back();
}
int m_c;
vector m_vRet;
};

测试用例

template
void Assert(const vector& v1, const vector& v2)
{
if (v1.size() != v2.size())
{
assert(false);
return;
}
for (int i = 0; i < v1.size(); i++)
{
assert(v1[i] == v2[i]);
}
}
template
void Assert(const T& t1, const T& t2)
{
assert(t1 == t2);
}
int main()
{
vector<vector> boxes = { {1,1},{2,1},{1,1} };
int portsCount = 2, maxBoxes = 3, maxWeight = 3;
auto res = Solution().boxDelivering(boxes, portsCount, maxBoxes, maxWeight);
Assert(4, res);
boxes = { {1,2},{3,3},{3,1},{3,1},{2,4} };
portsCount = 3, maxBoxes = 3, maxWeight =6;
res = Solution().boxDelivering(boxes, portsCount, maxBoxes, maxWeight);
Assert(6, res);
boxes = { {2,4},{2,5},{3,1},{3,2},{3,7},{3,1},{4,4},{1,3},{5,2} };
portsCount = 5, maxBoxes = 5, maxWeight = 7;
res = Solution().boxDelivering(boxes, portsCount, maxBoxes, maxWeight);
Assert(14, res);
//CConsole::Out(res);

}

优化二:单调双向队列

原理

setPre的旧值如果大于等于新值,则被淘汰了。这意味着值是按升序排序的。移除值有两种原因:一,旧值比新值大,被淘汰。从容器尾淘汰。二,旧值超重或超过数量了,从容器头淘汰。所以用双向队列。

代码

class Solution {
public:
int boxDelivering(vector<vector>& boxes, int portsCount, int maxBoxes, int maxWeight) {
m_c = boxes.size();
m_vRet.resize(m_c+1);//记录boxes[0,i) 需的最小行程数
vector vWeightSum = { 0 };//箱子重量前缀和
for (const auto& v : boxes)
{
vWeightSum.emplace_back(v[1] + vWeightSum.back());
}
vector vDownSum = { 0,0 };//假定不是本车的第一个箱子,卸货需要的次数
for (int i = 1; i < m_c; i++)
{
vDownSum.emplace_back(vDownSum.back() + (boxes[i][0] != boxes[i-1][0]));
}
std::deque<pair<int, int>> mSumJ = { { 0,0} };
for (int i = 1; i <= m_c; i++)
{
// [left,i)为空,不会超重,也不会超量。所以无需判断是否为空
while (mSumJ.size() &&((i - mSumJ.front().second > maxBoxes) || (vWeightSum[i] - vWeightSum[mSumJ.front().second] > maxWeight)))
{
//如果[left,i)超重或超亮
mSumJ.pop_front();
}
m_vRet[i ] = mSumJ.front().first + 2 + vDownSum[i] ;
if (i + 1 > m_c)
{
continue;
}
const int iNew = m_vRet[i] - vDownSum[i + 1];
while (mSumJ.size() && (mSumJ.back().first >= iNew))
{
mSumJ.pop_back();
}
mSumJ.emplace_back(iNew, i);
}
return m_vRet.back();
}
int m_c;
vector m_vRet;
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。

https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程

https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《闻缺陷则喜算法册》doc版

https://download.csdn.net/download/he_zhidan/88348653

鄙人想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
墨家名称的来源:有所得以墨记之。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17

或者 操作系统:win10 开发环境:

VS2022 C++17


相关文章
|
1月前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
41 3
|
17天前
|
机器学习/深度学习 JSON 算法
二叉树遍历算法的应用场景有哪些?
【10月更文挑战第29天】二叉树遍历算法作为一种基础而重要的算法,在许多领域都有着不可或缺的应用,它为解决各种复杂的问题提供了有效的手段和思路。随着计算机科学的不断发展,二叉树遍历算法也在不断地被优化和扩展,以适应新的应用场景和需求。
24 0
|
26天前
|
存储 并行计算 安全
C++多线程应用
【10月更文挑战第29天】C++ 中的多线程应用广泛,常见场景包括并行计算、网络编程中的并发服务器和图形用户界面(GUI)应用。通过多线程可以显著提升计算速度和响应能力。示例代码展示了如何使用 `pthread` 库创建和管理线程。注意事项包括数据同步与互斥、线程间通信和线程安全的类设计,以确保程序的正确性和稳定性。
|
28天前
|
存储 算法 搜索推荐
这些算法在实际应用中有哪些具体案例呢
【10月更文挑战第19天】这些算法在实际应用中有哪些具体案例呢
33 1
|
1月前
|
机器学习/深度学习 人工智能 算法
[大语言模型-算法优化] 微调技术-LoRA算法原理及优化应用详解
[大语言模型-算法优化] 微调技术-LoRA算法原理及优化应用详解
77 0
[大语言模型-算法优化] 微调技术-LoRA算法原理及优化应用详解
|
28天前
|
监控 算法 数据挖掘
HyperLogLog算法有哪些应用场景呢
【10月更文挑战第19天】HyperLogLog算法有哪些应用场景呢
15 0
|
1月前
|
机器学习/深度学习 算法 数据建模
计算机前沿技术-人工智能算法-生成对抗网络-算法原理及应用实践
计算机前沿技术-人工智能算法-生成对抗网络-算法原理及应用实践
30 0
|
安全 Java 测试技术
python接口自动化(三)--如何设计接口测试用例(详解)
上篇我们已经介绍了什么是接口测试和接口测试的意义。在开始接口测试之前,我们来想一下,如何进行接口测试的准备工作。或者说,接口测试的流程是什么?有些人就很好奇,接口测试要流程干嘛?不就是拿着接口文档直接利用接口 测试工具测试嘛。其实,如果只是三五个接口,你可以这么做一个临时的接口测试。但是,如果是上百个接口,或者,你们公司的这个项目,第一次做接口测试,那么,我们还是很有必要严格遵守接口测试的流程。
360 0
python接口自动化(三)--如何设计接口测试用例(详解)
|
测试技术
正交试验测试用例设计及工具推荐
在科研和生产实践中,人们往往要做许多次实验来进行某项研究。实验条件一般包括很多因素,当因素的值不同时,实验的结果也不一样。如果想把每个因素的每个值都要实验一遍,总实验数就等于各因素的值的个数的乘积,而这个数往往很大,超过了可接受的成本。 例如,假设某个实验由A,B,C,D四个因素,每个因素都有10个不同的取值,那么如果想把每个因素都考虑到,我们需要做 10*10*10*10=10000次实验。 为了减少实验数目,我们必须选出那些最有代表性的例子。于是,就要用到了正交表法(Orthogonal Array Testing Strategy)。
344 0
正交试验测试用例设计及工具推荐
|
算法 安全 测试技术
【软件测试】测试用例的设计方法
测试用例写的过于简单,则可能失去了测试用例的意义,设计过于简单的测试用例其实并没有真正的进行设计,只是把需要测试的功能模块记录下来而已,它的作用仅仅是在测试过程中作为一个简单的测试计划,提醒测试人员测试的主要功能包括哪些而已,测试用例设计的本质应该是在设计的过程中理解需求,检验需求,并把对软件系统的测试方法的思路记录下来,以便指导将来的测试
【软件测试】测试用例的设计方法