模拟退火算法MATLAB实现

简介: 模拟退火算法MATLAB实现

介绍

算法试图随着控制参数T的降低,使目标函 数值f(内能E)也逐渐降低,直至趋于全局最 小值(退火中低温时的最低能量状态),算法 工作过程就像固体退火过程一样。

Metropolis准则——–以概率接受新状态

若在温度T,当前状态i (解1)→ 新状态 j(解2)

若E_j(目标函数f_2)<E_i(f_1),则接受 j 为当前状态;

若E_j>E_i ,概率P=e^−E_j−E_i/KT大于[0,1)区间的 随机数,则仍接受状态 j 为当前状态; 若不成立,则保留状态 I 为当前状态。

算法其他参数的说明

退火过程由一组初始参数,即冷却进度表控制,它的核心是尽量使系统达到准平衡,以使算法在有限的时间内逼近最优解。冷却进度表包括:

1.控制参数的初值T_0:冷却开始的温度;

2.控制参数T的衰减函数:要将连续的降温过程,离散成降温过程中的一系列温度点,衰减函数即计算这一系列温度的表达式;

3. 控制参数T的终值T_f(停止准则);

4. Markov链的长度L_k:任意温度T的迭代次数。

算法基本步骤

1、令T=T_0,随机生成一个初始解x_0,并计算相应的

     目标函数值E(x_0);

2、令T等于冷却进度表中的下一个值T_i ;

3、根据当前解x_i进行扰动,产生一个新解x_j ,计相应

     的目标函数值E(x_j) ,得到 ∆e= E(x_j)−E(x_i);

4、 ∆e<0,则新解x_j被接受,作为新的当前解;

      ∆e>0,则新解x_j按概率P接受;

5、在温度T_i下,重复L_k次的扰动和接受过程,即执行

     步骤(3)、(4);

6、判断T是否已达到T_f,是,则终止算法;否则转到

  (2)继续执行

几点说明

1、新解的产生    

 要求尽可能地遍及解空间的各个区域,这样,在某一 恒定温度下,不断产生新解时,就可能跳出局部最优解。

2、收敛的一般条件:

  • 初始温度足够高;
  • 热平衡时间足够长;
  • 终止温度足够低;
  • 降温过程足够缓慢;  

举例

算法的MATLAB实现旅行商问题

模型:一名商人要到n 个不同的城市去推销商品,每2 个城市I 和j 之间的距离为d,如何选择一条路径使得商人每个城市走一遍后回到起点所走的路径最短。

例:有52座城市,已知每座城市的坐标,求每 个城市走一遍后回到起点,所走的路径最短。

一、算法设计步骤

2.新解的产生(扰动)

(1)二变换法:任选序号u,v (设u<v<n),交换u,v之间 的访问顺序。

(2)三变换法:任选序号u,v,w (设u≤v<w), 将u,v之间 的路径插到w之后访问

while t>=tf
 for r=1:Markov_length  
        if (rand < 0.5) 
     %随机产生0~1的数,若小于0.5,则二变换
            ind1 = 0; ind2 = 0;
            while (ind1 == ind2)
                ind1 = ceil(rand.*amount);
                ind2 = ceil(rand.*amount);
            end
            tmp1 = sol_new(ind1);
            sol_new(ind1) = sol_new(ind2);
            sol_new(ind2) = tmp1;
else    
          %否则,三变换
            ind1 = 0; ind2 = 0; ind3 = 0;
            while (ind1 == ind2) || (ind1 == ind3) ...
                 || (ind2 == ind3) || (abs(ind1-ind2) == 1)
                ind1 = ceil(rand.*amount);
                ind2 = ceil(rand.*amount);
                ind3 = ceil(rand.*amount);
            end
            tmp1 = ind1;tmp2 = ind2;tmp3 = ind3;
 if (ind1 < ind2) && (ind2 < ind3)
            elseif (ind1 < ind3) && (ind3 < ind2)
                ind2 = tmp3;ind3 = tmp2;
            elseif (ind2 < ind1) && (ind1 < ind3)
                ind1 = tmp2;ind2 = tmp1;
            elseif (ind2 < ind3) && (ind3 < ind1)
                ind1 = tmp2;ind2 = tmp3; ind3 = tmp1;
            elseif (ind3 < ind1) && (ind1 < ind2)
                ind1 = tmp3;ind2 = tmp1; ind3 = tmp2;
            elseif (ind3 < ind2) && (ind2 < ind1)
                ind1 = tmp3;ind2 = tmp2; ind3 = tmp1;
            end      % ind1 < ind2 < ind3
            tmplist1 = sol_new((ind1+1):(ind2-1));  %u、v之间的城市
            sol_new((ind1+1):(ind1+ind3-ind2+1)) = ...
                sol_new((ind2):(ind3));   %将v到w的城市移到u后面
            sol_new((ind1+ind3-ind2+2):ind3) = ...
                tmplist1;     %u、v之间的城市移到w后面
        end

3.目标函数

访问所有城市的路径总长度:

模拟退火算法求出目标函数的最小值

 % 计算目标函数即内能
        E_new = 0;
        for i = 1 : (amount-1)
            E_new = E_new + ...
                dist_matrix(sol_new(i),sol_new(i+1));
        end
        %从第一个城市到最后一个城市的距离
        E_new = E_new + ...
            dist_matrix(sol_new(amount),sol_new(1));

if E_new < E_current
            E_current = E_new;
            sol_current = sol_new;
            if E_new < E_best
                % 冷却过程中最好的解保存下来´
                E_best = E_new;
                sol_best = sol_new;
            end
        else
            % 若新解的目标函数大于当前解的,
               % 则以一定的概率接受新解
            if rand < exp(-(E_new-E_current)./t)
                E_current = E_new;
                sol_current = sol_new;
            else
                sol_new = sol_current;
            end
        end

 


相关文章
|
17天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
3天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
11天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
19天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
11天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如&quot;How are you&quot;、&quot;I am fine&quot;、&quot;I love you&quot;等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
16天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
20天前
|
算法
通过matlab分别对比PSO,反向学习PSO,多策略改进反向学习PSO三种优化算法
本项目使用MATLAB2022A版本,对比分析了PSO、反向学习PSO及多策略改进反向学习PSO三种优化算法的性能,主要通过优化收敛曲线进行直观展示。核心代码实现了标准PSO算法流程,加入反向学习机制及多种改进策略,以提升算法跳出局部最优的能力,增强全局搜索效率。
|
14天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
19天前
|
算法 5G 数据安全/隐私保护
基于MIMO系统的PE-AltMin混合预编码算法matlab性能仿真
本文介绍了基于交替最小化(AltMin)算法的混合预编码技术在MIMO系统中的应用。通过Matlab 2022a仿真,展示了该算法在不同信噪比下的性能表现。核心程序实现了对预编码器和组合器的优化,有效降低了硬件复杂度,同时保持了接近全数字预编码的性能。仿真结果表明,该方法具有良好的鲁棒性和收敛性。
32 8
|
18天前
|
算法 决策智能
基于遗传优化算法的TSP问题求解matlab仿真
本项目使用遗传算法解决旅行商问题(TSP),目标是在四个城市间找到最短路径。算法通过编码、选择、交叉、变异等步骤,在MATLAB2022A上实现路径优化,最终输出最优路径及距离。