RBF神经网络案例——客户流失率预测(二)

本文涉及的产品
函数计算FC,每月15万CU 3个月
简介: RBF神经网络案例——客户流失率预测

6.2 拟合效果与隐含层神经元个数的关系

取定权学习效率为lrw=0.035,中心学习lrc=0.01,宽度学习效率为lrs=0.01,残差容量sig=0.001,学习次数定为n=800,分别隐含层神经元数r=4,8,12,16效果进行对比,结果如图,程序见下

clear
A=xlsread('d:\kehu.xlsx');
Y=A';
X=1:60;n=600;
t=1:length(X);
sig=0.001;lrw=0.035;lrc=0.01;lrs=0.01;
[o,eb1,s1]=BRF(X,Y,lrw,lrc,lrs,sig,4,n);
[o2,eb2,s2]=BRF(X,Y,lrw,lrc,lrs,sig,8,n);
[o3,eb3,s3]=BRF(X,Y,lrw,lrc,lrs,sig,12,n);
[o4,eb4,s4]=BRF(X,Y,lrw,lrc,lrs,sig,14,n);
ebmax=max(eb1);
eb2=eb2(eb2<=ebmax);
eb3=eb3(eb3<=ebmax);
eb4=eb4(eb4<=ebmax);
subplot(2,2,1),bar(eb1);
subplot(2,2,2),bar(eb2);
subplot(2,2,3),bar(eb3);
subplot(2,2,4),bar(eb4);

                                                       学习效果与神经元数关系

由图可以看出:

1、r较小时,残差震荡厉害,但误相对较小;

2、r较大时,残差震荡不大,但收敛慢。

6.3 学习效率对训练效果的影响

取定中心学习lrc=0.01,宽度学习效率为lrs=0.01,残差容量sig=0.001,学习次数定为n=1000,隐含层神经元数r=8。让权学习效率分别取lrw=0.001,0.005,0.02,0.08,将效果进行对如图.

clear
A=xlsread('d:\kehu.xlsx');
Y=A';
X=1:60;n=1000;
t=1:length(X);
sig=0.001;r=8;lrc=0.01;lrs=0.01;
[o1,eb1,s1]=BRF(X,Y,0.001,lrc,lrs,sig,r,n);
[o2,eb2,s2]=BRF(X,Y,0.005,lrc,lrs,sig,r,n);
[o3,eb3,s3]=BRF(X,Y,0.02,lrc,lrs,sig,r,n);
[o4,eb4,s4]=BRF(X,Y,0.1,lrc,lrs,sig,r,n);
ebmax=max(eb1);
eb2=eb2(eb2<=ebmax);
eb3=eb3(eb3<=ebmax);
eb4=eb4(eb4<=ebmax);
subplot(2,2,1),bar(eb1);
subplot(2,2,2),bar(eb2);
subplot(2,2,3),bar(eb3);
subplot(2,2,4),bar(eb4);

                                               不同权学习效率效果对比

由图可以看出,权值过于小和过于大,学习效果都不太理想,lrw=0.02学习效果最好。

取定权学习效率lrw=0.02,宽度学习效率为lrs=0.01,残差容量sig=0.001,学习次数定为n=1000,隐含层神经元数r=8。让中心学习效率分别取lrw=0.001,0.005,0.02,0.08,将效果进行对如图

clear
A=xlsread('d:\kehu.xlsx');
Y=A';
X=1:60;n=1000;
t=1:length(X);
sig=0.001;r=8;lrw=0.02;lrs=0.01;
[o1,eb1,s1]=BRF(X,Y,lrw,0.001,lrs,sig,r,n);
[o2,eb2,s2]=BRF(X,Y,lrw,0.005,lrs,sig,r,n);
[o3,eb3,s3]=BRF(X,Y,lrw,0.02,lrs,sig,r,n);
[o4,eb4,s4]=BRF(X,Y,lrw,0.1,lrs,sig,r,n);
ebmax=max(eb1);
eb2=eb2(eb2<=ebmax);
eb3=eb3(eb3<=ebmax);
eb4=eb4(eb4<=ebmax);
subplot(2,2,1),bar(eb1);
subplot(2,2,2),bar(eb2);
subplot(2,2,3),bar(eb3);
subplot(2,2,4),bar(eb4);

                                              中心学习效率与学习效果关系对比

由图可以看出,当其他参数不变时,中心学习效率不能太小,也不能太大,给出的四个值中lrc=0.005时学习效果最佳。

取定权学习效率lrw=0.02,中心学习效率为lrc=0.005,残差容量sig=0.001,学习次数定为n=1000,隐含层神经元数r=8。让宽度学习效率分别取lrs=0.001,0.005,0.025,0.1,将效果进行对如图

clear
A=xlsread('d:\kehu.xlsx');
Y=A';
X=1:60;n=1000;
t=1:length(X);
sig=0.001;r=8;lrw=0.02;lrc=0.005;
[o1,eb1,s1]=BRF(X,Y,lrw,lrc,0.001,sig,r,n);
[o2,eb2,s2]=BRF(X,Y,lrw,lrc,0.005,sig,r,n);
[o3,eb3,s3]=BRF(X,Y,lrw,lrc,0.025,sig,r,n);
[o4,eb4,s4]=BRF(X,Y,lrw,lrc,0.1,sig,r,n);
ebmax=max(eb1);
eb2=eb2(eb2<=ebmax);
eb3=eb3(eb3<=ebmax);
eb4=eb4(eb4<=ebmax);
subplot(2,2,1),bar(eb1);
subplot(2,2,2),bar(eb2);
subplot(2,2,3),bar(eb3);
subplot(2,2,4),bar(eb4);

                                               宽度学习效率对残差影响

 由图(8)可以看出,不同宽度学习效率对残差影响较大,给出的四个值中,lrs=0.005的网络学习效果最好。

给定r=8,n=20000,lrw=0.02,lrc=0.005,lrs=0.005,sig=0.001,对网络进行深度训练,训练效果如图

clear
A=xlsread('d:\kehu.xlsx');
Y=A';
X=1:60;n=20000;
t=1:length(X);
sig=0.001;r=8;lrw=0.02;lrc=0.005;lrs=0.005;
[o1,eb1,s1]=BRF(X,Y,lrw,lrc,lrs,sig,r,n);
t=1:length(Y);
y=mapminmax('reverse',o1,s1);
subplot(2,1,1);
plot(t,Y,'*',t,y,'+-');legend('ʵ¼ÊÖµ','Ô¤²âÖµ');
subplot(2,1,2);
eb1=eb1(eb1<10);
bar(eb1);

                                                       最佳学习效率的学习效果

7、添加动量因子的RBF神经网络学习

由前面的计算可知,当学习时间短,参数取得稍微不恰当,网络学习为出现两个严重问题:

(1) 残差震荡现象严重;

(2)收敛速度慢。

对于(2)可以增加学习时间,而对于(1),震荡现象不尽早消除,会陷入局部极值,普遍做法是在负梯度方向加入干扰因子,称为动量因子。新的参数公式如下i=1,2,…,r

其中,fw,fc,fσ分别为权、中心、宽度的动量因子系数,Δw-1是权的动量因子,-1的意思,把上一次的调整方向当作这次的动量方向。关于c和s的解释一样。

利用前面找到的个最佳参数,添加动量因子编制一个RBF神经网络学习程序

function [o,eb,s1]=BRFr(X,Y,lrw,lrc,lrs,fw,fc,fs,sig,r,n)
x=mapminmax(X);
[y,s1]=mapminmax(Y);
m=length(y);
w=rand(r,1);
c=2*rand(r,1)-1;
s=rand(r,1)+0.1;
eb=[];
wr=zeros(r,1);
cr=wr;
sr=wr;
for k=1:n
    d1=dist(c,x);
    d2=d1.^2;
    ss=[];
    for i=1:r
        sr1=ones(1,m)*s(i)^2;
        ss=[ss;sr1];
    end
    p=exp(-d2./ss);
    o=[];
    for j=1:m
       for i=1:r
           wp(i)=w(i)*p(i,j);
       end
       o=[o,sum(wp)];
    end
    e=y-o;
    err=sum(e.^2)^0.5;
    if err<sig
       Xt=datetime;
       disp(Xt);
       break;
    end
    eb=[eb,err];
    dw=[];dc=[];ds=[];
    for i=1:r
        dw=[dw;sum(e.*p(i,:))];
        dc=[dc;w(i)/s(i)^2*sum(e.*p(i,:).*d1(i,:))];
        ds=[ds;w(i)/s(i)^3*sum(e.*p(i,:).*d2(i,:))];
    end
    w=w+lrw*dw+fw*wr;
    c=c+lrc*dc+fc*cr;
    s=s+lrs*ds+fs*sr;
    wr=dw;
    cr=dc;
    sr=ds;
end

利用前面找到的个最佳参数,添加动量因子编制一个RBF神经网络学习程序

clear
A=xlsread('d:\kehu.xlsx');
Y=A';
X=1:60;n=1000;
t=1:length(X);
sig=0.001;r=8;lrw=0.02;lrc=0.005;lrs=0.005;
fc=0.001;fw=0.01;fs=0.001;
[o1,eb1,s1]=BRFr(X,Y,lrw,lrc,lrs,fw,fc,fs,sig,r,n);
t=1:length(Y);
y=mapminmax('reverse',o1,s1);
subplot(2,1,1);
plot(t,Y,'*',t,y,'+-');legend('ʵ¼ÊÖµ','Ô¤²âÖµ');
subplot(2,1,2);
eb1=eb1(eb1<10);
bar(eb1);

                               加入动量因子的学习效果

由参数n=1000计算效果得出如下结论:

(1)学习时间短;

(2)残差震荡先现象不明显;

(3)收敛的一致性较好。

相关实践学习
【AI破次元壁合照】少年白马醉春风,函数计算一键部署AI绘画平台
本次实验基于阿里云函数计算产品能力开发AI绘画平台,可让您实现“破次元壁”与角色合照,为角色换背景效果,用AI绘图技术绘出属于自己的少年江湖。
从 0 入门函数计算
在函数计算的架构中,开发者只需要编写业务代码,并监控业务运行情况就可以了。这将开发者从繁重的运维工作中解放出来,将精力投入到更有意义的开发任务上。
相关文章
|
2月前
|
人工智能 云栖大会 调度
「2025云栖大会」“简单易用的智能云网络,加速客户AI创新”专场分论坛诚邀莅临
”简单易用的智能云网络,加速客户AI创新“专场分论坛将于9月24日13:30-17:00在云栖小镇D1-5号馆举办,本场技术分论坛将发布多项云网络创新成果,深度揭秘支撑AI时代的超低时延、自适应调度与跨域协同核心技术。同时来自领先企业的技术先锋将首次公开其在模型训练、企业出海等高复杂场景中的突破性实践,展现如何通过下一代云网络实现算力效率跃升与成本重构,定义AI时代网络新范式。
171 4
|
2月前
|
机器学习/深度学习 并行计算 算法
粒子群算法优化RBF神经网络的MATLAB实现
粒子群算法优化RBF神经网络的MATLAB实现
352 123
|
2月前
|
机器学习/深度学习 算法 机器人
基于自适应RBF神经网络滑模控制的机械臂轨迹跟踪仿真(Simulink仿真实现)
基于自适应RBF神经网络滑模控制的机械臂轨迹跟踪仿真(Simulink仿真实现)
160 4
|
2月前
|
机器学习/深度学习 传感器 分布式计算
基于模糊RBF神经网络轨迹跟踪研究(Matlab代码实现)
基于模糊RBF神经网络轨迹跟踪研究(Matlab代码实现)
164 1
|
7月前
|
人工智能 运维 监控
阿里云携手神州灵云打造云内网络性能监测标杆 斩获中国信通院高质量数字化转型十大案例——金保信“云内网络可观测”方案树立云原生运维新范式
2025年,金保信社保卡有限公司联合阿里云与神州灵云申报的《云内网络性能可观测解决方案》入选高质量数字化转型典型案例。该方案基于阿里云飞天企业版,融合云原生引流技术和流量“染色”专利,解决云内运维难题,实现主动预警和精准观测,将故障排查时间从数小时缩短至15分钟,助力企业降本增效,形成可跨行业复制的数字化转型方法论。
399 6
|
8月前
|
运维 容灾 API
云栖大会 | 阿里云网络持续演进之路:简单易用的智能云网络,让客户专注业务创新
云栖大会 | 阿里云网络持续演进之路:简单易用的智能云网络,让客户专注业务创新
497 2
|
8月前
|
人工智能 运维 API
第七届 SD-WAN&SASE大会暨云网络大会 | 简单易用的智能云网络,让客户专注业务创新
第七届 SD-WAN&SASE大会暨云网络大会 | 简单易用的智能云网络,让客户专注业务创新
216 2
|
10月前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
434 10
|
11月前
|
存储 缓存 监控
Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
本文介绍了Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
1062 7
|
机器学习/深度学习 存储 自然语言处理
深度学习入门:循环神经网络------RNN概述,词嵌入层,循环网络层及案例实践!(万字详解!)
深度学习入门:循环神经网络------RNN概述,词嵌入层,循环网络层及案例实践!(万字详解!)

热门文章

最新文章