商品购物管理与推荐系统Python+Django网页界面+协同过滤推荐算法

简介: 商品购物管理与推荐系统Python+Django网页界面+协同过滤推荐算法

一、介绍

商品管理与推荐系统。本系统使用Python作为主要开发语言,前端采用HTML、CSS、BootStrap等技术搭建显示界面,后端采用Django框架处理用户的请求响应。
创新点:使用协同过滤算法,以用户对商品的评分作为依据,在猜你喜欢界面中实现对当前登录用户的个性化推荐。
主要功能有:

  • 系统分为用户和管理员两个角色。
  • 用户可以登录、注册、查看商品、购买商品、添加购物车、发布评论、对商品进行评分、查看购物车、编辑个人信息、充值等操作
  • 管理员在后台管理系统中可以对用户和商品进行管理

    二、系统功能效果图片展示

    img_11_21_13_25_36

img_11_21_13_25_53

img_11_21_13_25_25

img_11_21_13_25_19

三、演示视频 and 代码 and 安装

地址:https://www.yuque.com/ziwu/yygu3z/qsszw5siwwf2vtf3

四、协同过滤算法介绍

协同过滤算法是一种广泛应用于推荐系统的技术,它基于一个简单的假设:如果两个人在过去喜欢相同的东西,那么他们在将来也有可能喜欢相似的东西。这种算法通常分为两类:基于用户的协同过滤和基于物品的协同过滤。

  • 基于用户的协同过滤:这种方法首先找出与目标用户兴趣相似的其他用户,然后根据这些相似用户的喜好来推荐物品给目标用户。
  • 基于物品的协同过滤:与之相反,这种方法先找出与目标物品相似的其他物品,然后把这些物品推荐给那些喜欢目标物品的用户。

现在,让我们用Python实现一个简单的基于用户的协同过滤算法。我们将创建一个小型的电影评分数据集,并基于用户的评分相似性来推荐电影。

import numpy as np

# 创建一个用户-电影评分矩阵
ratings = np.array([
    [5, 4, 1, 1, 3],
    [3, 2, 1, 3, 3],
    [4, 3, 3, 1, 5],
    [3, 3, 1, 2, 4],
    [1, 5, 5, 2, 1],
])

def cosine_similarity(v1, v2):
    """计算两个向量之间的余弦相似度"""
    return np.dot(v1, v2) / (np.linalg.norm(v1) * np.linalg.norm(v2))

def recommend_movies(ratings, user_index):
    """为指定用户推荐电影"""
    scores = []
    target = ratings[user_index]

    for i, user_ratings in enumerate(ratings):
        if i != user_index:
            score = cosine_similarity(target, user_ratings)
            scores.append((i, score))

    scores.sort(key=lambda x: x[1], reverse=True)
    print("最相似的用户索引和相似度分数:", scores)

    # 取出最相似用户的评分
    similar_user_ratings = ratings[scores[0][0]]

    # 找出该用户未评分但相似用户评分高的电影
    recommendations = []
    for i in range(len(similar_user_ratings)):
        if target[i] == 0 and similar_user_ratings[i] >= 4:
            recommendations.append(i)

    return recommendations

# 推荐电影给用户0
print("推荐给用户0的电影索引:", recommend_movies(ratings, 0))

这段代码中,我们首先定义了一个简单的用户-电影评分矩阵,然后使用余弦相似度计算不同用户之间的相似度。基于这些相似度分数,我们找出与目标用户最相似的用户,然后推荐那些目标用户未评分但相似用户评分较高的电影。这就是一个基本的协同过滤推荐示例。

目录
相关文章
|
8天前
|
存储 算法 编译器
算法入门:剑指offer改编题目:查找总价格为目标值的两个商品
给定递增数组和目标值target,找出两数之和等于target的两个数字。利用双指针法,left从头、right从尾向中间逼近,根据和与target的大小关系调整指针,时间复杂度O(n),空间复杂度O(1)。找不到时返回{-1,-1}。
|
21天前
|
存储 算法 调度
【复现】【遗传算法】考虑储能和可再生能源消纳责任制的售电公司购售电策略(Python代码实现)
【复现】【遗传算法】考虑储能和可再生能源消纳责任制的售电公司购售电策略(Python代码实现)
128 26
|
1月前
|
机器学习/深度学习 算法 机器人
【机器人路径规划】基于D*算法的机器人路径规划(Python代码实现)
【机器人路径规划】基于D*算法的机器人路径规划(Python代码实现)
|
1月前
|
机器学习/深度学习 算法 机器人
【机器人路径规划】基于改进型A*算法的机器人路径规划(Python代码实现)
【机器人路径规划】基于改进型A*算法的机器人路径规划(Python代码实现)
106 0
|
1月前
|
机器学习/深度学习 编解码 算法
【机器人路径规划】基于迪杰斯特拉算法(Dijkstra)的机器人路径规划(Python代码实现)
【机器人路径规划】基于迪杰斯特拉算法(Dijkstra)的机器人路径规划(Python代码实现)
164 4
|
1月前
|
机器学习/深度学习 算法 机器人
【机器人路径规划】基于A*算法的机器人路径规划研究(Python代码实现)
【机器人路径规划】基于A*算法的机器人路径规划研究(Python代码实现)
145 4
|
1月前
|
机器学习/深度学习 算法 机器人
【机器人路径规划】基于深度优先搜索(Depth-First-Search,DFS)算法的机器人路径规划(Python代码实现)
【机器人路径规划】基于深度优先搜索(Depth-First-Search,DFS)算法的机器人路径规划(Python代码实现)
117 3
|
1月前
|
算法 机器人 定位技术
【机器人路径规划】基于流场寻路算法(Flow Field Pathfinding)的机器人路径规划(Python代码实现)
【机器人路径规划】基于流场寻路算法(Flow Field Pathfinding)的机器人路径规划(Python代码实现)
机器学习/深度学习 算法 自动驾驶
211 0
|
1月前
|
机器学习/深度学习 自然语言处理 算法
小红书:通过商品标签API自动生成内容标签,优化社区推荐算法
小红书通过商品标签API自动生成内容标签,提升推荐系统精准度与用户体验。流程包括API集成、标签生成算法与推荐优化,实现高效率、智能化内容匹配,助力社交电商发展。
80 0

热门文章

最新文章

推荐镜像

更多