1、设计模式七大原则
1.1 设计模式的目的
编写软件过程中,程序员面临着来自 耦合性,内聚性以及可维护性,可扩展性,重用性,灵活性
等多方面的挑战,设计模式是为了让程序(软件),具有更好
- 代码重用性 (即:相同功能的代码,不用多次编写)
- 可读性 (即:编程规范性, 便于其他程序员的阅读和理解)
- 可扩展性 (即:当需要增加新的功能时,非常的方便,称为可维护)
- 可靠性 (即:当我们增加新的功能后,对原来的功能没有影响)
- 使程序呈现高内聚,低耦合的特性
1.2 设计模式常用的七大原则
设计模式原则,其实就是程序员在编程时,应当遵守的原则,也是各种设计模式的基础(即:设计模式为什么这样设计的依据)
- 单一职责原则
- 接口隔离原则
- 依赖倒转(倒置)原则
- 里氏替换原则
- 开闭原则
- 迪米特法则
- 合成复用原则
2、单一职责原则
2.1 基本介绍
对类来说的,即一个类应该只负责一项职责
。如类 A 负责两个不同职责:职责 1,职责 2。当职责 1 需求变更而改变 A 时,可能造成职责 2 执行错误,所以需要将类 A 的粒度分解为 A1,A2
2.2 例子
2.2.1 存在问题
若是用同一个方法,显然无法处理这3种交通工具,违反了单一职责,想法是把类拆分或者把方法拆分。
package com.atguigu.principle.singleresponsibility; public class SingleResponsibility1 { public static void main(String[] args) { // TODO Auto-generated method stub Vehicle vehicle = new Vehicle(); vehicle.run("摩托车"); vehicle.run("汽车"); vehicle.run("飞机"); } } // 交通工具类 // 方式1 // 1. 在方式1 的run方法中,违反了单一职责原则 // 2. 解决的方案非常的简单,根据交通工具运行方法不同,分解成不同类即可 class Vehicle { public void run(String vehicle) { System.out.println(vehicle + " 在公路上运行...."); } }
2.2.2 把类拆分
这里我们拆分成3个类,分别处理对应的交通工具
package com.atguigu.principle.singleresponsibility; public class SingleResponsibility2 { public static void main(String[] args) { // TODO Auto-generated method stub RoadVehicle roadVehicle = new RoadVehicle(); roadVehicle.run("摩托车"); roadVehicle.run("汽车"); AirVehicle airVehicle = new AirVehicle(); airVehicle.run("飞机"); } } //方案2的分析 //1. 遵守单一职责原则 //2. 但是这样做的改动很大,即将类分解,同时修改客户端 //3. 改进:直接修改Vehicle 类,改动的代码会比较少=>方案3 class RoadVehicle { public void run(String vehicle) { System.out.println(vehicle + "公路运行"); } } class AirVehicle { public void run(String vehicle) { System.out.println(vehicle + "天空运行"); } } class WaterVehicle { public void run(String vehicle) { System.out.println(vehicle + "水中运行"); } }
roadvehicle类
class RoadVehicle { public void run(String vehicle) { System.out.println(vehicle + "公路运行"); } }
airvehicle类
class AirVehicle { public void run(String vehicle) { System.out.println(vehicle + "天空运行"); } }
watervehicle类
class WaterVehicle { public void run(String vehicle) { System.out.println(vehicle + "水中运行"); } }
2.2.3 把方法拆分
package com.atguigu.principle.singleresponsibility; public class SingleResponsibility3 { public static void main(String[] args) { // TODO Auto-generated method stub Vehicle2 vehicle2 = new Vehicle2(); vehicle2.run("汽车"); vehicle2.runWater("轮船"); vehicle2.runAir("飞机"); } } //方式3的分析 //1. 这种修改方法没有对原来的类做大的修改,只是增加方法 //2. 这里虽然没有在类这个级别上遵守单一职责原则,但是在方法级别上,仍然是遵守单一职责 class Vehicle2 { public void run(String vehicle) { //处理 System.out.println(vehicle + " 在公路上运行...."); } public void runAir(String vehicle) { System.out.println(vehicle + " 在天空上运行...."); } public void runWater(String vehicle) { System.out.println(vehicle + " 在水中行...."); } //方法2. //.. //.. //... }
2.3 单一职责原则注意事项和细节
- 降低类的复杂度,一个类只负责一项职责。
- 提高类的可读性,可维护性
- 降低变更引起的风险
- 通常情况下,我们应当遵守单一职责原则,只有逻辑足够简单,才可以在代码级违反单一职责原则;只有类中方法数量足够少,可以在方法级别保持单一职责原则
3、接口隔离原则
3.1 基本介绍
- 客户端不应该依赖它不需要的接口,即
一个类对另一个类的依赖应该建立在最小的接口上
- 类 A 通过接口 Interface1 依赖类 B,类 C 通过接口 Interface1 依赖类 D,如果接口 Interface1 对于类 A 和类 C来说不是最小接口,那么类 B 和类 D 必须去实现他们不需要的方法。
- 按隔离原则应当这样处理:将接口 Interface1 拆分为独立的几个接口(这里我们拆分成 3 个接口),类 A 和类 C 分别与他们需要的接口建立 依赖关系。也就是采用接口隔离原则
package com.atguigu.principle.segregation; public class Segregation1 { public static void main(String[] args) { // TODO Auto-generated method stub } } //接口 interface Interface1 { void operation1(); void operation2(); void operation3(); void operation4(); void operation5(); } class B implements Interface1 { public void operation1() { System.out.println("B 实现了 operation1"); } public void operation2() { System.out.println("B 实现了 operation2"); } public void operation3() { System.out.println("B 实现了 operation3"); } public void operation4() { System.out.println("B 实现了 operation4"); } public void operation5() { System.out.println("B 实现了 operation5"); } } class D implements Interface1 { public void operation1() { System.out.println("D 实现了 operation1"); } public void operation2() { System.out.println("D 实现了 operation2"); } public void operation3() { System.out.println("D 实现了 operation3"); } public void operation4() { System.out.println("D 实现了 operation4"); } public void operation5() { System.out.println("D 实现了 operation5"); } } class A { //A 类通过接口Interface1 依赖(使用) B类,但是只会用到1,2,3方法 public void depend1(Interface1 i) { i.operation1(); } public void depend2(Interface1 i) { i.operation2(); } public void depend3(Interface1 i) { i.operation3(); } } class C { //C 类通过接口Interface1 依赖(使用) D类,但是只会用到1,4,5方法 public void depend1(Interface1 i) { i.operation1(); } public void depend4(Interface1 i) { i.operation4(); } public void depend5(Interface1 i) { i.operation5(); } }
3.2 接口隔离设计及实现
- 类 A 通过接口 Interface1 依赖类 B,类 C 通过接口 Interface1 依赖类 D,如果接口 Interface1 对于类 A 和类 C
来说不是最小接口,那么类 B 和类 D 必须去实现他们不需要的方法 将接口 Interface1 拆分为独立的几个接口
,类 A 和类 C 分别与他们需要的接口建立依赖关系。也就是采用接口
隔离原则- 接口 Interface1 中出现的方法,根据实际情况拆分为三个接口
package com.atguigu.principle.segregation.improve; public class Segregation1 { public static void main(String[] args) { // TODO Auto-generated method stub // 使用一把 A a = new A(); a.depend1(new B()); // A类通过接口去依赖B类 a.depend2(new B()); a.depend3(new B()); C c = new C(); c.depend1(new D()); // C类通过接口去依赖(使用)D类 c.depend4(new D()); c.depend5(new D()); } } // 接口1 interface Interface1 { void operation1(); } // 接口2 interface Interface2 { void operation2(); void operation3(); } // 接口3 interface Interface3 { void operation4(); void operation5(); } class B implements Interface1, Interface2 { public void operation1() { System.out.println("B 实现了 operation1"); } public void operation2() { System.out.println("B 实现了 operation2"); } public void operation3() { System.out.println("B 实现了 operation3"); } } class D implements Interface1, Interface3 { public void operation1() { System.out.println("D 实现了 operation1"); } public void operation4() { System.out.println("D 实现了 operation4"); } public void operation5() { System.out.println("D 实现了 operation5"); } } class A { // A 类通过接口Interface1,Interface2 依赖(使用) B类,但是只会用到1,2,3方法 public void depend1(Interface1 i) { i.operation1(); } public void depend2(Interface2 i) { i.operation2(); } public void depend3(Interface2 i) { i.operation3(); } } class C { // C 类通过接口Interface1,Interface3 依赖(使用) D类,但是只会用到1,4,5方法 public void depend1(Interface1 i) { i.operation1(); } public void depend4(Interface3 i) { i.operation4(); } public void depend5(Interface3 i) { i.operation5(); } }
4、依赖倒置原则
4.1 基本介绍
依赖倒转原则(Dependence Inversion Principle)是指:
- 高层模块不应该依赖低层模块,二者都应该依赖其抽象
- 抽象不应该依赖细节,细节应该依赖抽象
- 依赖倒转(倒置)的中心思想是面向接口编程
- 依赖倒转原则是基于这样的设计理念:相对于细节的多变性,抽象的东西要稳定的多。以抽象为基础搭建的架构比以细节为基础的架构要稳定的多。在 java 中,抽象指的是接口或抽象类,细节就是具体的实现类
- 使用接口或抽象类的目的是制定好规范,而不涉及任何具体的操作,把展现细节的任务交给他们的实现类去完成
package com.atguigu.principle.inversion; public class DependecyInversion { public static void main(String[] args) { Person person = new Person(); person.receive(new Email()); } } class Email { public String getInfo() { return "电子邮件信息: hello,world"; } } //完成Person接收消息的功能 //方式1分析 //1. 简单,比较容易想到 //2. 如果我们获取的对象是 微信,短信等等,则新增类,同时Perons也要增加相应的接收方法 //3. 解决思路:引入一个抽象的接口IReceiver, 表示接收者, 这样Person类与接口IReceiver发生依赖 // 因为Email, WeiXin 等等属于接收的范围,他们各自实现IReceiver 接口就ok, 这样我们就符号依赖倒转原则 class Person { public void receive(Email email ) { System.out.println(email.getInfo()); } }
4.2 改进
package com.atguigu.principle.inversion.improve; public class DependecyInversion { public static void main(String[] args) { //客户端无需改变 Person person = new Person(); person.receive(new Email()); person.receive(new WeiXin()); } } //定义接口 interface IReceiver { public String getInfo(); } class Email implements IReceiver { public String getInfo() { return "电子邮件信息: hello,world"; } } //增加微信 class WeiXin implements IReceiver { public String getInfo() { return "微信信息: hello,ok"; } } //方式2 class Person { //这里我们是对接口的依赖 public void receive(IReceiver receiver ) { System.out.println(receiver.getInfo()); } }