软件测试/人工智能|思维导图很难画,ChatGPT来帮你

简介: 软件测试/人工智能|思维导图很难画,ChatGPT来帮你

image.png

简介

在我们日常的软件测试工作中,测试用例是非常重要的一环,但是很多时候我们并不是第一时间就设计测试用例的,我们会先根据需求先制定一个思维导图,后面再去设计我们的测试用例,有的公司更是会通过思维导图来设计测试用例的。本文就来给大家介绍一下如何使用ChatGPT来生成思维导图。

什么是思维导图?

思维导图是一种用图形方式呈现信息、概念和关系的工具,旨在帮助人们更清晰地组织、理解和记忆复杂的信息。它通常以树状结构展示,将主题、子主题、关键词等通过线条和连接箭头相连,从而呈现出不同元素之间的层次关系和联系。

但是我们需要了解,ChatGPT无法直接帮我们绘制思维导图,我们还需要进行一下加工,比如借助一些插件才可以将ChatGPT生成的Markdown文件展示成为思维导图,本文将举例说明。

实践示例

现在我们来实践一下如何让ChatGPT生成思维导图时的测试用例,首先我们需要将需求给到ChatGPT,并且规定好输出的格式,如下:

提问如下:我是一名软件测试工程师,现在我要对一个文献高级搜索功能做测试,要求是能够根据文献资源的名称进行精准匹配和模糊匹配,对文献资源的作者和发表年份做精确匹配。要求根据该需求生成测试用例。要求生成的测试用例为Markdown格式。

ChatGPT的回答如下:

## 文献名称精确匹配

1. **输入准确的文献名称**
   - *输入:* "Introduction to Machine Learning"
   - *预期结果:* 应该精确匹配到名称为 "Introduction to Machine Learning" 的文献资源。

2. **输入不存在的文献名称**
   - *输入:* "Random Nonexistent Paper Name"
   - *预期结果:* 应该返回零匹配结果,提示文献资源不存在。

## 文献名称模糊匹配

1. **输入名称的部分关键词**
   - *输入:* "Algorithm"
   - *预期结果:* 应返回包含关键词 "Algorithm" 的多个文献资源。

2. **输入拼写错误的文献名称**
   - *输入:* "Introducton to Machine Learnig"
   - *预期结果:* 应该进行模糊匹配或纠正拼写错误,并返回相关的文献资源,或者给出类似建议。

## 作者精确匹配

1. **输入完整作者名**
   - *输入:* "John Smith"
   - *预期结果:* 应该精确匹配到名为 "John Smith" 的作者所发表的文献资源。

2. **输入不存在的作者名**
   - *输入:* "Random Nonexistent Author"
   - *预期结果:* 应该返回零匹配结果,提示该作者不存在或未发表文献。

## 发表年份精确匹配

1. **输入准确的发表年份**
   - *输入:* "2020"
   - *预期结果:* 应该返回发表年份为 2020 的所有文献资源。

2. **输入不存在的发表年份**
   - *输入:* "1800"
   - *预期结果:* 应该返回零匹配结果,提示该年份没有对应的文献资源。

我们可以看到ChatGPT的回答基本覆盖了我们的测试需求,但是缺少了对于界面以及兼容性的测试,我们可以对ChatGPT进行追问,如下:

提问:测试用例中并没有体现对系统界面、按钮以及兼容性的测试,请添加上对于这部分的测试用例

ChatGPT的回复如下:

## 文献名称精确匹配

1. **输入准确的文献名称**
   - *输入:* "Introduction to Machine Learning"
   - *预期结果:* 应该精确匹配到名称为 "Introduction to Machine Learning" 的文献资源。

2. **输入不存在的文献名称**
   - *输入:* "Random Nonexistent Paper Name"
   - *预期结果:* 应该返回零匹配结果,提示文献资源不存在。

## 文献名称模糊匹配

1. **输入名称的部分关键词**
   - *输入:* "Algorithm"
   - *预期结果:* 应返回包含关键词 "Algorithm" 的多个文献资源。

2. **输入拼写错误的文献名称**
   - *输入:* "Introducton to Machine Learnig"
   - *预期结果:* 应该进行模糊匹配或纠正拼写错误,并返回相关的文献资源,或者给出类似建议。

## 作者精确匹配

1. **输入完整作者名**
   - *输入:* "John Smith"
   - *预期结果:* 应该精确匹配到名为 "John Smith" 的作者所发表的文献资源。

2. **输入不存在的作者名**
   - *输入:* "Random Nonexistent Author"
   - *预期结果:* 应该返回零匹配结果,提示该作者不存在或未发表文献。

## 发表年份精确匹配

1. **输入准确的发表年份**
   - *输入:* "2020"
   - *预期结果:* 应该返回发表年份为 2020 的所有文献资源。

2. **输入不存在的发表年份**
   - *输入:* "1800"
   - *预期结果:* 应该返回零匹配结果,提示该年份没有对应的文献资源。

## 界面和按钮测试

1. **界面布局**
   - *预期结果:* 界面应该清晰显示搜索框、过滤器和搜索结果,并具有易于导航和使用的布局。

2. **搜索按钮功能**
   - *操作:* 点击搜索按钮
   - *预期结果:* 应该触发搜索功能并显示相应的搜索结果。

3. **重置按钮功能**
   - *操作:* 点击重置按钮
   - *预期结果:* 应该清空搜索条件并重置搜索界面到初始状态。

## 兼容性测试

1. **不同浏览器兼容性**
   - *操作:* 在常用浏览器(Chrome、Firefox、Safari、Edge等)中进行搜索操作
   - *预期结果:* 搜索功能在不同浏览器中都能正常工作并呈现一致的效果。

2. **移动设备兼容性**
   - *操作:* 使用手机或平板等移动设备进行搜索操作
   - *预期结果:* 搜索功能在移动设备上呈现出良好的用户体验,界面布局合理且搜索功能正常。

这一次生成发回复已经基本符合了我们的需求,我们可以将这个回复复制到我们的Markdown文件中,并且使用插件生成思维导图。

我们可以在vscode中安装markmap插件,Markmap插件是一款可以将Markdown文件转成思维导图展示的插件如下图:

image.png

我们将ChatGPT内容复制到我们在vscode中的思维导图.md文件中,然后点击生成思维导图,最后生成的思维导图如下:

image.png

总结

本文主要介绍了如何使用ChatGPT来生成思维导图的步骤,思维导图是我们学习和工作中经常用到的工具,对于提高我们的工作效率有很大的帮助,ChatGPT作为人工智能,对于问题的思考会比较全面,我们人力去进行思考容易出现纰漏,因此,ChatGPT在这方面对于我们有很强的帮助。

image.png

相关文章
|
17天前
|
人工智能 自然语言处理 自动驾驶
深入理解ChatGPT:下一代人工智能助手的开发与应用
【10月更文挑战第27天】本文深入探讨了ChatGPT的技术原理、开发技巧和应用场景,展示了其在语言理解和生成方面的强大能力。文章介绍了基于Transformer的架构、预训练与微调技术,以及如何定制化开发、确保安全性和支持多语言。通过实用工具如GPT-3 API和Fine-tuning as a Service,开发者可以轻松集成ChatGPT。未来,ChatGPT有望在智能家居、自动驾驶等领域发挥更大作用,推动人工智能技术的发展。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
软件测试中的人工智能:改变游戏规则的革新
在这篇技术性文章中,我们将深入探讨人工智能(AI)如何彻底改变了软件测试领域。从自动化测试到智能缺陷检测,AI不仅提高了测试的效率和准确性,还为软件开发团队提供了前所未有的洞察力。通过具体案例,本文揭示了AI在软件测试中应用的现状、挑战及未来趋势,强调了技术创新在提升软件质量与开发效率中的关键作用。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
软件测试中的人工智能:提升效率与准确性的新途径
在当今快速发展的技术领域,人工智能(AI)正成为软件测试的重要工具。本文将探讨AI在软件测试中的应用,如何通过智能化手段提高测试的效率和准确性。从自动化测试到缺陷预测,我们将深入了解AI如何改变传统的软件测试方式,为软件开发流程带来革命性的变化。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
软件测试中的人工智能:现状与未来
【10月更文挑战第6天】 本文探讨了人工智能在软件测试中的应用,包括自动化测试、智能缺陷分析以及测试用例生成等方面。通过案例分析和未来趋势预测,文章展示了AI如何提高软件测试的效率和准确性,并指出了当前面临的挑战和未来的发展方向。
42 1
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
软件测试中的人工智能:改变游戏规则的技术革命
【10月更文挑战第10天】 本文深入探讨了人工智能在软件测试中的应用,揭示了它如何提高测试效率、减少人为错误,并预示了未来软件测试行业的发展趋势。通过案例分析和原理讲解,文章展现了AI技术在自动化测试、缺陷检测和性能评估等方面的巨大潜力。
|
1月前
|
机器学习/深度学习 数据采集 人工智能
软件测试中的人工智能应用与挑战
【10月更文挑战第10天】 在当今信息技术飞速发展的时代,软件系统日益复杂且多样化,传统的手工测试方法已无法满足快速迭代和高效发布的需求。人工智能(AI)技术的引入为软件测试领域带来了新的希望和机遇。本文将探讨人工智能在软件测试中的应用现状、所面临的挑战以及未来的发展趋势,旨在启发读者思考如何更好地利用AI技术提升软件测试的效率和质量。
39 0
|
6天前
|
机器学习/深度学习 人工智能 物联网
通义灵码在人工智能与机器学习领域的应用
通义灵码不仅在物联网领域表现出色,还在人工智能、机器学习、金融、医疗和教育等领域展现出广泛应用前景。本文探讨了其在这些领域的具体应用,如模型训练、风险评估、医疗影像诊断等,并总结了其提高开发效率、降低门槛、促进合作和推动创新的优势。
通义灵码在人工智能与机器学习领域的应用
|
7天前
|
人工智能 算法 安全
人工智能在医疗诊断中的应用与前景####
本文旨在探讨人工智能(AI)技术在医疗诊断领域的应用现状、面临的挑战以及未来的发展趋势。随着科技的不断进步,AI技术正逐步渗透到医疗行业的各个环节,尤其在提高诊断准确性和效率方面展现出巨大潜力。通过分析当前AI在医学影像分析、疾病预测、个性化治疗方案制定等方面的实际应用案例,我们可以预见到一个更加智能化、精准化的医疗服务体系正在形成。然而,数据隐私保护、算法透明度及伦理问题仍是制约其进一步发展的关键因素。本文还将讨论这些挑战的可能解决方案,并对AI如何更好地服务于人类健康事业提出展望。 ####
|
6天前
|
机器学习/深度学习 人工智能 算法
人工智能在医疗诊断中的应用与挑战
本文探讨了人工智能(AI)在医疗诊断领域的应用及其面临的挑战。随着技术的不断进步,AI已经在医学影像分析、疾病预测和个性化治疗等方面展现出巨大潜力。然而,数据隐私、算法透明度以及临床整合等问题仍然是亟待解决的关键问题。本文旨在通过分析当前AI技术在医疗诊断中的具体应用案例,探讨其带来的优势和潜在风险,并提出相应的解决策略,以期为未来AI在医疗领域的深入应用提供参考。
34 3
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能在教育领域的应用与挑战
随着科技的不断进步,人工智能(AI)技术已经深入到社会的各个领域,其中教育领域尤为突出。本文旨在探讨人工智能在教育领域的应用现状、面临的挑战以及未来的发展趋势。通过分析AI技术如何改变传统教学模式,提高教育质量和效率,同时指出其在实际应用中可能遇到的问题和挑战,为未来教育的发展提供参考。
56 2