【机器学习基础】决策树(Decision Tree)

简介: 【机器学习基础】决策树(Decision Tree)

1 什么是决策树

决策树是一种树形结构,用于描述从一组数据中提取出一些特征,并通过这些特征来进行分类或预测的过程。决策树的每个节点表示一个特征,每个分支表示这个特征的一个取值,叶子节点表示最终的分类结果。

1.1 决策树的应用场景

决策树可以用于解决分类和回归问题,常见的应用场景包括:

  • 贷款风险评估:决策树可以用于预测贷款申请人的信用风险,帮助银行更准确地评估申请人的偿债能力。
  • 疾病诊断:决策树可以用于辅助医生进行疾病诊断,通过分析病人的症状、体征和实验室检查结果等信息,帮助医生确定最可能的疾病诊断。
  • 客户流失预测:决策树可以用于预测客户流失的可能性,帮助企业制定相应的客户保持策略,以降低客户流失率。
  • 股票价格预测:决策树可以用于预测股票价格的变动,帮助投资者制定更准确的投资策略。
    恶意入侵行为检测:决策树可以用于检测网络中的恶意入侵行为,保护企业的网络安全。
    在线广告点击预测:决策树可以用于预测互联网用户对在线广告点击的概率,帮助广告商更好地定位广告投放。

1.2 决策树的组成

决策树由以下几部分组成:

  1. 决策节点:决策树的起点,代表了整个决策过程的开始。
  2. 机会节点:机会节点代表一个事件发生的可能性,也就是一个随机事件。
  3. 决策枝:从决策节点或机会节点出发,代表决策者可以作出的选择或决策。
  4. 概率枝:从机会节点出发,代表该事件发生的概率。
  5. 损益值:在决策过程中,每个决策或事件的发生都伴随着一定的成本或收益,这些成本或收益被称为损益值。
  6. 终点:代表了决策过程的结束,通常以一个方框表示。

在构建决策树时,需要从决策树的末端开始,从后向前逐步推进到决策树的始端。在推进的过程中,需要计算每个阶段事件发生的期望值,并考虑资金的时间价值。最后,通过对决策树进行剪枝,删去除了最高期望值以外的其他所有分枝,找到问题的最佳方案。

1.3 决策树的递归策略

显然,决策树的生成是一个递归过程。在决策树基本算法中,有三种情形会导致递归返回:

  1. 当前结点包含的样本全属于同一类别,无需划分
  2. 当前属性集为空或是所有样本在所有属性上取值相同,无法划分
  3. 当前结点包含的样本集合为空不能划分

在第(2)种情形下,我们把当前结点标记为叶结点,并将其类别设定为该结点所含样本最多的类别; 在第(3)种情形下,同样把当前结点标记为叶结点,但将其类别设定为其父结点所含样本最多的类别.注意这两种情形的处理实质不同: 情形(2)是在利用当前结点的后验分布而情形(3)则是把结点的样本分布作为当前结点的先验分布.


2 划分选择

决策树的关键是如何选择最优划分属性,一般而言,随着划分过程的不断进行,我们希望决策树的分支节点包含的样本尽可能的属于同一类别,即结点的“纯度”越来越高

2.1 信息熵

在决策树中,信息熵是一个重要的概念,用于度量样本集合的不纯度。对于样本集合而言,如果样本集合中只有一个类别,则其确定性最高,熵为0;反之,如果样本集合中包含多个类别,则熵越大,表示样本集合中的分类越多样。

在决策树的构建过程中,信息熵被用来选择最佳的划分属性。对于每个属性,计算其划分后的信息熵,选择使得信息熵最小的属性作为当前节点的划分属性。这样能够使得划分后的子树更加纯,即类别更加明显,从而降低样本集合的不确定性。

信息熵的公式如下:

假定离散属性α \alphaαV VV个可能的取值,若使用α \alphaα来对样本集D DD进行划分,则会产生V VV个分支结点,其中v vv第个分支结点包含了D DD中所有在属性a aa上取值为a v a^vav的样本,记为D v D^vDv.我们可根据信息熵计算公式计算出D v D^vDv的信息嫡,再考虑到不同的分支结点所包含的样本数不同,给分支结点赋予权重∣ D v ∣ ∣ D ∣ \frac{|D^v|}{|D|}DDv,即样本数越多的分支结点的影响越大,于是可计算出用属性α \alphaα对样本集D DD进行划分所获得的“信息增益”(information gain)

2.2 信息增益

为了衡量不同划分方式降低信息熵的效果,还需要计算分类后信息熵的减少值(原系统的信息熵与分类后系统的信息熵之差),该减少值称为熵增益或信息增益,其值越大,说明分类后的系统混乱程度越低,即分类越准确。

信息增益的计算公式如下:

一般而言,信息增益越大,则意味着使用属性a来进行划分所获得的“纯度提升”越大。

对于信息增益,举一个西瓜书上面的例子:

2.3 增益率

在上面的介绍中,我们有意忽略了"编号"这一列.若把"编号"也作为一个候选划分属性,可计算出它的信息增益为0.998远大于其他候选划分属性.这很容易理解"编号"将产生 17 个分支,每个分支结点仅包含一个样本,这些分支结点的纯度己达最大.然而,这样的决策树显然不具有泛化能力,无法对新样本进行有效预测.

实际上,信息增益准则对可取值数目较多的属性有所偏好,为减少这种偏好可能带来的不利影响,著名的C4.5决策树算法不直接使用信息增益,而是使用“增益率”(gain ratio)来选择最优划分属性.采用信息增益相同的符号表示,增益率定义为

其中,

优点:属性a的可能取值数目越多 (即 V 越大),则 IV(a) 的值通常就越大。

缺点:对取值数目少的属性有偏好

C4.5 算法中使用启发式: 先从候选划分属性中找出信息增益高于平均水平的,再从中选取增益率最高的。

2.4 基尼指数

决策树模型的建树依据主要用到的是基尼系数的概念。反映了从 D 中随机抽取两个样例,其类别标记不一致的概率。

采用基尼系数进行运算的决策树也称为CART决策树

基尼系数(gini)用于计算一个系统中的失序现象,即系统的混乱程度(纯度)。基尼系数越高,系统的混乱程度就越高(不纯),建立决策树模型的目的就是降低系统的混乱程度(体高纯度),从而得到合适的数据分类效果

基尼系数的计算公式如下

基尼系数越低表示系统的混乱程度越低(纯度越高),区分度越高,越适合用于分类预测。

在候选属性集合中,选取那个使划分后基尼指数最小的属性。即:


3 剪枝处理

划分选择的各种准则虽然对决策树的尺寸有较大影响,但对泛化性能的影响很有限。是决策树预防“过拟合”的主要手段!

剪枝方法和程度对决策树泛化性能的影响更为显著(在数据带噪时甚至可能将泛化性能提升 25%)

3.1 预剪枝

从上往下剪枝,通常利用超参数进行剪枝。例如,通过限制树的最大深度(max_depth)便能剪去该最大深度下面的节点。

没有剪枝前:

剪枝后:

3.2 后剪枝

从下往上剪枝,大多是根据业务需求剪枝。例如,在违约预测模型中,认为违约概率为45%和50%的两个叶子节点都是高危人群,那么就把这两个叶子节点合并成一个节点。

相关文章
|
2月前
|
机器学习/深度学习 存储 算法
决策树和随机森林在机器学习中的应用
在机器学习领域,决策树(Decision Tree)和随机森林(Random Forest)是两种非常流行且强大的分类和回归算法。它们通过模拟人类决策过程,将复杂的数据集分割成易于理解和处理的子集,从而实现对新数据的准确预测。
93 10
|
2月前
|
机器学习/深度学习 数据采集 监控
探索机器学习:从数据到决策
【9月更文挑战第18天】在这篇文章中,我们将一起踏上一段激动人心的旅程,穿越机器学习的世界。我们将探讨如何通过收集和处理数据,利用算法的力量来预测未来的趋势,并做出更加明智的决策。无论你是初学者还是有经验的开发者,这篇文章都将为你提供新的视角和思考方式。
|
2月前
|
机器学习/深度学习 算法 Python
从菜鸟到大师:一棵决策树如何引领你的Python机器学习之旅
【9月更文挑战第9天】在数据科学领域,机器学习如同璀璨明珠,吸引无数探索者。尤其对于新手而言,纷繁复杂的算法常让人感到迷茫。本文将以决策树为切入点,带您从Python机器学习的新手逐步成长为高手。决策树以其直观易懂的特点成为入门利器。通过构建决策树分类器并应用到鸢尾花数据集上,我们展示了其基本用法及效果。掌握决策树后,还需深入理解其工作原理,调整参数,并探索集成学习方法,最终将所学应用于实际问题解决中,不断提升技能。愿这棵智慧之树助您成为独当一面的大师。
44 3
|
2月前
|
机器学习/深度学习 算法 Python
决策树下的智慧果实:Python机器学习实战,轻松摘取数据洞察的果实
【9月更文挑战第7天】当我们身处数据海洋,如何提炼出有价值的洞察?决策树作为一种直观且强大的机器学习算法,宛如智慧之树,引领我们在繁复的数据中找到答案。通过Python的scikit-learn库,我们可以轻松实现决策树模型,对数据进行分类或回归分析。本教程将带领大家从零开始,通过实际案例掌握决策树的原理与应用,探索数据中的秘密。
47 1
|
3月前
|
机器学习/深度学习 算法 数据挖掘
【白话机器学习】算法理论+实战之决策树
【白话机器学习】算法理论+实战之决策树
|
3月前
|
机器学习/深度学习 算法 自动驾驶
揭秘机器学习模型的决策之道
【8月更文挑战第22天】本文将深入浅出地探讨机器学习模型如何从数据中学习并做出预测。我们将一起探索模型背后的数学原理,了解它们是如何被训练以及如何对新数据进行预测的。文章旨在为初学者提供一个清晰的机器学习过程概述,并启发读者思考如何在自己的项目中应用这些技术。
|
3月前
|
机器学习/深度学习 算法 搜索推荐
基于机器学习的用户行为分析:深入洞察与精准决策
【8月更文挑战第3天】基于机器学习的用户行为分析为企业提供了深入了解用户需求、优化产品设计和制定精准营销策略的有力工具。随着人工智能和大数据技术的不断发展,用户行为分析将更加智能化和个性化。未来,我们可以期待更加高效、精准的机器学习算法和模型的出现,以及更多创新性的应用场景的拓展。同时,也需要关注数据隐私和安全性问题,确保用户数据的安全和合规使用。
|
3月前
|
机器学习/深度学习 算法 Python
决策树下的智慧果实:Python机器学习实战,轻松摘取数据洞察的果实
【8月更文挑战第3天】在数据的海洋中探寻真知,决策树犹如智慧之树,以其直观易懂的强大功能,引领我们逐步缩小决策范围,轻松获取数据洞察。本篇将带您踏上Python机器学习之旅,从理解决策树为何受青睐开始,通过scikit-learn库实现鸢尾花数据集分类,解析其决策机制,并掌握调参技巧,最终优化模型性能,共同摘取数据科学的甜美果实。
50 1
|
3月前
|
机器学习/深度学习 数据可视化 算法
决策树VS世界:掌握Python机器学习中的这棵树,决策从此不再迷茫
【8月更文挑战第2天】在数据驱动时代,决策树作为一种直观且易于解释的机器学习方法,因其强大的分类与回归能力备受青睐。本文介绍决策树的基础概念:通过属性测试划分数据,优化选择以提高预测准确度。使用Python的scikit-learn库,我们演示了如何加载鸢尾花数据集,构建并训练决策树模型,评估其准确性,以及利用`plot_tree`函数可视化决策过程,从而更好地理解模型的工作原理。掌握这些技能,你将在面对复杂决策时更加自信。
25 2
|
3月前
|
机器学习/深度学习 算法 Python
从菜鸟到大师:一棵决策树如何引领你的Python机器学习之旅
【8月更文挑战第1天】在数据科学领域,机器学习如同璀璨明珠,而决策树则以其直观易懂成为入门利器。本文引导初学者利用Python的`scikit-learn`库构建决策树模型。以鸢尾花数据集为例,展示了从加载数据、划分训练/测试集、创建`DecisionTreeClassifier`、训练模型到评估准确率的全过程。掌握这些基本操作后,还需深入理解信息增益、基尼不纯度等原理,学会调参优化,并探索集成学习方法如随机森林和梯度提升树,最终将理论应用于实践,成长为真正的机器学习大师。
36 2
下一篇
无影云桌面