带你读《构建企业级好数据(Dataphin智能数据建设与治理白皮书)》——1. 用中台方法论构建与治理企业级好数据概览

本文涉及的产品
智能数据建设与治理Dataphin,200数据处理单元
简介: 带你读《构建企业级好数据(Dataphin智能数据建设与治理白皮书)》——1. 用中台方法论构建与治理企业级好数据概览

二、用中台方法论构建与治理企业级好数据


1. 概览


阿里巴巴在2015年提出全面启动中台战略,并在集团内部开启了一系列数据技术建设探索,沉淀下特有方法论捋清了数据全生命周期的管理思路,将其植入到瓴羊智能数据建设与治理Dataphin产品中,并与Quick BI(数据可视化分析)、Quick Audience(全域消费者运营增长)一同形成数据中台建设核心产品体系。

 

自2018年问世以来,Dataphin已发展出了内容丰富的功能大图,到目前为止经历了多轮大版本升级,产品核心的能力模块清晰显现,可以帮助企业高效地完成「好数据」的构建。


1) 产品架构

 

image.png

Dataphin产品架构图

 

Dataphin从下而上可分为四个大板块:

 

平台底座:


引擎平台兼容:可支持不同的引擎及部署环境,可纳管不同的引擎,包括但不限于MaxCompute、EMR、Hadoop体系(CDH、华为、星环、亚信等)、交互式分析Holo、Impala、ADB for PG、Starrocks等,Flink商业及开源版等,也支持不同云平台环境的部署及私有IDC部署


多样化开放接口:开放数据集成、数据处理、调度、运维、元数据、质量、安全、标准等几百个标准化接口,可与企业自有系统进行对接集成或进行功能个性与定制


配置化能力:开放了关于消息渠道、审批渠道、认证、审批模板、样式配置等客制化的能力,更好的适配企业的规范及场景。


数据建设平台:


全域数据可集成:通过配置化的方式完成数据的模型构建及指标的构建,并同时支持代码编写模式,更灵活的适应不同的场景和诉求,并支持日千万级调度能力。


规范建模:Dataphin遵循Ralph Kimball的维度建模理论,可根据业务实际情况在Dataphin设计并创建概念模型,并通过概念模型中的业务实体(业务对象或业务活动)创建对应的维度表、事实表、原子指标、业务限定、指标、汇总逻辑表。


指标构建与管理:通过构建的规范化的要素(原子指标、统计周期、维度、业务限定),配置化的方式构建指标;也可将通过代码方式已经加工好的指标注册到汇总表上,进行统一的指标管理。


标签工厂:可通过配置化的方式加工标签,让业务人员也可进行标签的二次加工及群组的圈选;通过快捷的配置,提供群组及标签的服务;根据元数据进行标签及群组进行治理、运行和管理。


数据服务:通过数据服务,可将提供高效的API开发及运维能力,可将数据资源通过API统一服务业务系统。


隐私计算:打通内外循环,实现数据不出域的自由流通,让数据可用不可见,数据价值化的同时保障数据的安全合规。


全域数据治理:Dataphin不仅仅治理数仓内的数据,也需要治理全域数据资产。


资产盘点:在数据治理开始前,需要对全域的数据进行盘点,对元数据进行丰富


标准及规范:Dataphin可支持数据的规范、研发的规范,制定数据标准,让数据治理“有法可依”;通过数据标准的手动和自动映射,可将表资产的字段与标准进行关联,并进行元数据和内容的稽核和监控


资产质量:提供全域的资产质量校验及跟踪方案,从质量稽核与评估(质量大盘、配置质量规则、查看校验记录、质量监控、智能报警)、质量治理(质量工作台、质量整改跟踪)、查看质量报告等功能。


数据安全:通过自动及手动的方式,可对资产进行分类及分级打标,对数据的权限申请流通进行规范的管理,也可对高敏数据在流通前就对数据进行加密处理,避免数据泄露


资源治理:通过元数据,对数据存储与计算资源诊断与治理,在数据价值挖掘的同时,也控制数据的成本,避免数据沼泽。


全域数据运营:数据在消费者手中用起来才能发挥数据的价值,全域运营是将数据资产推送到数据消费场景中,让数据在消费者手动实现价值化。全域数据运营板块主要提供一下功能模块:


资产目录:业务及消费视角的数据资产目录,可快速搜索查找推荐数据资产,推动企业数据文化。针对不同的人群,Datpahin可定制多套目录满足不同场景不同人群的找数、看数需求。


数据门户:通过提供场景式、主题是的数据门户,让用数的成本进一步降低,数据可找到正确的人。


自助消费:通过打通BI分析系统,面向业务人员运营人员,实现从可见到可用;通过提供即系分析的功能,可通过简单的SQL、Python能力,进行数据分析


2) 三大核心优势


Dataphin产品经过了几年的沉淀,积累的丰富的产品能力,也形成了独特的产品核心优势:

 

image.png

三大核心优势

 

多样的计算引擎兼容,可利旧降本:除了支持大数据离线和实时计算主流引擎外,我们还会不断探索和集成更多的计算引擎,以满足不同客户的需求。我们会不断优化引擎的性能和稳定性,以提高计算效率和降低成本。在部署的平台底座上,我们也适配支持了不同的云平台,包括阿里云的公共云多租户、阿里云专有云、阿里云公共云VPC部署,IDC部署,以及其他云平台上进行部署。


资产化驱动构建数据:阿里巴巴多年的内部的实践,我们沉淀了一套完整的方法论,帮助数据资产的构建。这套方法论和产品也在100多家客户中进行了深度的验证。


价值导向、消费驱动的数据治理:我们将进一步完善数据治理体系,包括数据盘点、数据质量管理、数据安全与合规等方面。我们还将借鉴和应用更多的经验和案例,不断提升数据治理的水平和效果。同时,我们也会更加注重数据的价值和消费者需求,以提供更有针对性和可用性的数据治理解决方案。

相关文章
|
1月前
|
数据采集 SQL 人工智能
瓴羊Dataphin:AI驱动的数据治理——千里之行,始于标准 |【瓴羊数据荟】数据MeetUp第三期
数据标准是数据治理的核心抓手,通过梳理数据标准可以有效提升数据质量。瓴羊Dataphin平台利用AI技术简化数据治理流程,实现自动化的数据标准建立、质量规则构建和特征识别,助力企业在大模型时代高效治理数据,推动数据真正为业务服务。
337 28
瓴羊Dataphin:AI驱动的数据治理——千里之行,始于标准 |【瓴羊数据荟】数据MeetUp第三期
|
2月前
|
数据采集 自然语言处理 供应链
央国企“严选”的瓴羊,如何让数据“供得出、流得动、用得好”?|【瓴羊Dataphin在信通院2024数据资产管理大会】
在产业变革新浪潮下,数据资产管理步入“繁花时代”,瓴羊高级解决方案专家黄彦之出席2024数据资产管理大会并分享了瓴羊基于12年阿里最佳数据实践,通过Dataphin等产品助力央国企数智化转型的路径与方法。大会发布《数据治理产业图谱3.0》,瓴羊Dataphin入选BUCM板块代表产品,彰显其领先经验。
123 18
|
3月前
|
安全 Java 数据库连接
Dataphin的数据共享的应用场景和方案
不同的业务场景对数据访问和使用有着各自独特的需求,从简单的数据下载到复杂的跨系统集成,选择合适的数据共享与访问方式至关重要。本文旨在探讨几种常见的Dataphin上的数据共享与访问机制——包括数据复制、数据下载、视图创建、行级及列级权限控制、API数据服务以及JDBC连接等,并分析它们各自的适用场景、优势及限制,以帮助企业更好地根据自身需求做出合理的选择。
162 0
|
3月前
|
人工智能 关系型数据库 MySQL
数据魔力,一触即发 —— Dataphin数据服务API,百炼插件新星降临!
本文通过一个利用百炼大模型平台和Dataphin数据服务API构建一个客户360智能应用的案例,介绍如何使用Dataphin数据服务API在百炼平台创建一个自定义插件,用于智能应用的开发,提升企业智能化应用水平。
253 4
数据魔力,一触即发 —— Dataphin数据服务API,百炼插件新星降临!
|
4月前
|
数据处理 调度
Dataphin功能Tips系列(26)-事实逻辑表配置数据延迟
零售行业中,订单数据是每天晚上由pos系统同步至数据中台,但门店人员经常会没有及时将订单信息录入pos,也许隔天或是隔几天才录入,这会导致指标的不准确性,数据中台的开发人员往往需要进行批量补历史分区的数据,这时怎么才能减轻开发人员的工作,让系统能够自动补前几天分区中的事实逻辑表中的数据呢?
|
6月前
|
JSON 数据管理 关系型数据库
【Dataphin V3.9】颠覆你的数据管理体验!API数据源接入与集成优化,如何让企业轻松驾驭海量异构数据,实现数据价值最大化?全面解析、实战案例、专业指导,带你解锁数据整合新技能!
【8月更文挑战第15天】随着大数据技术的发展,企业对数据处理的需求不断增长。Dataphin V3.9 版本提供更灵活的数据源接入和高效 API 集成能力,支持 MySQL、Oracle、Hive 等多种数据源,增强 RESTful 和 SOAP API 支持,简化外部数据服务集成。例如,可轻松从 RESTful API 获取销售数据并存储分析。此外,Dataphin V3.9 还提供数据同步工具和丰富的数据治理功能,确保数据质量和一致性,助力企业最大化数据价值。
282 1
|
6月前
|
监控 安全 数据安全/隐私保护
确保数据安全与隐私保护的数据治理最佳实践
【8月更文第13天】随着数据成为企业最重要的资产之一,数据安全和隐私保护变得至关重要。本文将探讨数据治理中的一些最佳实践,并提供具体的代码示例来说明如何实施这些策略。
1384 4
|
7月前
|
SQL 运维 安全
【产品升级】Dataphin V4.2重大升级:上线敏捷版,打通数据资产管理和消费,开启数据价值放大新篇章
Dataphin 是阿里巴巴旗下的一个智能数据建设与治理平台,旨在帮助企业构建高效、可靠、安全的数据资产。在V4.2版本中,Dataphin敏捷版上线助力企业打造轻量版数据中台,打通数据资产管理和消费,陪伴企业迈入数据高价值应用新阶段。
2191 2
【产品升级】Dataphin V4.2重大升级:上线敏捷版,打通数据资产管理和消费,开启数据价值放大新篇章
|
7月前
|
SQL 关系型数据库 MySQL
如何在Dataphin中构建Flink+Paimon流式湖仓方案
当前大数据处理工业界非常重要的一个大趋势是一体化,尤其是湖仓一体架构。与过去分散的数据仓库和数据湖不同,湖仓一体架构通过将数据存储和处理融为一体,不仅提升了数据访问速度和处理效率,还简化了数据管理流程,降低了资源成本。企业可以更轻松地实现数据治理和分析,从而快速决策。paimon是国内开源的,也是最年轻的成员。 本文主要演示如何在 Dataphin 产品中构建 Flink+Paimon 的流式湖仓方案。
8005 10
如何在Dataphin中构建Flink+Paimon流式湖仓方案
|
7月前
|
运维 关系型数据库 调度
想一套Dataphin管理云上云下的集群和数据?“注册调度集群”来帮忙!
在实际业务场景中,部分企业在云上和云下(本地机房)都存在集群和数据库,企业期望通过一套Dataphin同时对这些集群和数据库进行管理,如何有效解决数据跨网络传输带来的安全性低和流量成本高的问题是其中的关键。为了解决上述问题,Dataphin推出“注册调度集群”功能,帮助企业实现一套Dataphin管理云上云下的集群和数据。
107 5

热门文章

最新文章