数据结构-堆排序及其复杂度计算

简介: 数据结构-堆排序及其复杂度计算

上节内容,我们讲了堆的实现,同时还包含了向上调整法向下调整法,最后我们用堆实现了对数据的排序:

int main()
{
  HP hp;
  HeapInit(&hp);
  int arr[] = { 65,100,70,32,50,60 };
  int i = 0;
  for (i = 0; i < sizeof(arr) / sizeof(int); i++)
  {
    HeapPush(&hp, arr[i]);
  }
  while (!HeapEmpty(&hp))
  {
    HeapDatatype top = HeapTop(&hp);
    printf("%d ", top);
    HeapPop(&hp);
  }
  return 0;
}

那以上代码能实现对数据的排序吗?

答案是可以的,但是以上方式有两个弊端

1. 要先写一个堆,太麻烦

2. 空间复杂度+拷贝数据。

1.堆排序

上节内容中,用堆对数据进行排序,是将数据一个一个插入堆,然后再调整排序的,那我们能不能直接把数据就建成一个堆?

当然可以,建堆有两种方式:向上调整建堆、向下调整建堆

1.1 向上调整建堆

我们先来讲向上调整建堆

向上调整建堆其实还是插入堆的逻辑,要求前面的数据必须是一个堆,下标从1开始是因为一个数据本身就可以被看做一个堆,然后向上调整。

下图就是我们对一个数组数据进行向上调整建堆后的结果,可以看出来,此时我们建的是一个小堆:

现在问题来了,我们要把数据排为升序,建大堆还是建小堆好?

先说结论:升序 -- 建大堆    降序 -- 建小堆

假设我们要得到升序,此时又建的是小堆,那我们就把选出的最小的数据放在下标为0的位置,要想继续选出次小的数据放在下标为1的位置,就要把剩下的数据看做堆,这样堆的关系就全乱了,只能重新建堆,代价太大。

而如果我们建大堆,向下调整选出最大的数据,首尾交换,把最大的数据放在最后一个下标的位置,然后隔离最后一个数据,把其他数据看做一个堆,再向下调整选出次大的,首尾交换......直到所有的数据被排好序,此时得到的就是数据升序。

代码如下:

#define  _CRT_SECURE_NO_WARNINGS 1
#include<stdio.h>
typedef int HeapDatatype;
swap(HeapDatatype* p1, HeapDatatype* p2)
{
  HeapDatatype tmp = *p1;
  *p1 = *p2;
  *p2 = tmp;
}
//向上调整法
void AdjustUp(HeapDatatype* a, int child)
{
  int parent = (child - 1) / 2;
  while (child > 0)
  {
    if (a[parent] < a[child])
    {
      HeapDatatype p = a[parent];
      a[parent] = a[child];
      a[child] = p;
      child = parent;
      parent = (child - 1) / 2;
    }
    else
    {
      break;
    }
  }
}
//向下调整法
void AdjustDown(HeapDatatype* a, int n, int parent)
{
  int child = parent * 2 + 1;
  while (child < n)
  {
    if (child + 1 < n && a[child] < a[child + 1])
    {
      child++;
    }
    if (a[parent] < a[child])
    {
      swap(&a[parent], &a[child]);
      parent = child;
      child = parent * 2 + 1;
    }
    else
    {
      break;
    }
  }
}
//堆排序
void HeapSort(int* a, int n)
{
  //建堆 - 向上调整建堆
  for (int i = 1; i < n; i++)
  {
    AdjustUp(a, i);
  }
  //向下调整得到次大数据
  int end = n - 1;
  while (end > 0)
  {
    swap(&a[0], &a[end]);
    AdjustDown(a, end, 0);
    end--;
  }
}
int main()
{
  int a[] = { 7,8,3,5,1,9,5,4 };
  HeapSort(a, sizeof(a) / sizeof(int));
  return 0;
}

我们建的是大堆,最后得到的就是升序:

要得到数据降序,就要建小堆,向下调整选出最小的数据,首尾交换,把最小数据放在最后一个下标的位置,隔离最后一个数据,把其他数据看做一个堆,再向下调整选出次小的数据,首尾交换......直到所有数据都被拍好序,这就得到数据降序。

代码如下:(只需将向下调整和向上调整中的'<'改为'>'即可

#define  _CRT_SECURE_NO_WARNINGS 1
#include<stdio.h>
typedef int HeapDatatype;
swap(HeapDatatype* p1, HeapDatatype* p2)
{
  HeapDatatype tmp = *p1;
  *p1 = *p2;
  *p2 = tmp;
}
//向上调整法
void AdjustUp(HeapDatatype* a, int child)
{
  int parent = (child - 1) / 2;
  while (child > 0)
  {
    if (a[parent] > a[child])
    {
      HeapDatatype p = a[parent];
      a[parent] = a[child];
      a[child] = p;
      child = parent;
      parent = (child - 1) / 2;
    }
    else
    {
      break;
    }
  }
}
//向下调整法
void AdjustDown(HeapDatatype* a, int n, int parent)
{
  int child = parent * 2 + 1;
  while (child < n)
  {
    if (child + 1 < n && a[child] > a[child + 1])
    {
      child++;
    }
    if (a[parent] > a[child])
    {
      swap(&a[parent], &a[child]);
      parent = child;
      child = parent * 2 + 1;
    }
    else
    {
      break;
    }
  }
}
//堆排序
void HeapSort(int* a, int n)
{
  //建堆 - 向上调整建堆
  for (int i = 1; i < n; i++)
  {
    AdjustUp(a, i);
  }
  //向下调整得到次小数据
  int end = n - 1;
  while (end > 0)
  {
    swap(&a[0], &a[end]);
    AdjustDown(a, end, 0);
    end--;
  }
}
int main()
{
  int a[] = { 7,8,3,5,1,9,5,4 };
  HeapSort(a, sizeof(a) / sizeof(int));
  return 0;
}

由于我们建的是小堆,所以得到的就是数据降序:

注意:不论是升序还是降序,数据都是从后往前放的,这样就不会使堆的关系混乱。

1.2 向下调整建堆

我们可以看到,堆排序使用向上调整建堆,还要写两个函数:向下调整函数、向上调整函数

那我们想用一个向下调整函数就解决问题呢?

这就需要向下调整建堆

向下调整建堆要求根节点的左右子树都是大堆(小堆),如果左右子树不满足大堆,我们只需要确保左右子树的左右子树是大堆(小堆)即可,如果又不是,我们再往下找,所以只要使所有父节点的左右子树都是大堆(小堆)就行,那我们就倒着调整,因为叶子节点本身就是一个堆,所以不需要调整,那就从最后一个节点的父节点开始调整

代码如下:

#define  _CRT_SECURE_NO_WARNINGS 1
#include<stdio.h>
typedef int HeapDatatype;
swap(HeapDatatype* p1, HeapDatatype* p2)
{
  HeapDatatype tmp = *p1;
  *p1 = *p2;
  *p2 = tmp;
}
//向下调整法
void AdjustDown(HeapDatatype* a, int n, int parent)
{
  int child = parent * 2 + 1;
  while (child < n)
  {
    if (child + 1 < n && a[child] > a[child + 1])
    {
      child++;
    }
    if (a[parent] > a[child])
    {
      swap(&a[parent], &a[child]);
      parent = child;
      child = parent * 2 + 1;
    }
    else
    {
      break;
    }
  }
}
//堆排序
void HeapSort(int* a, int n)
{
  //建堆 - 向下调整建堆
  for (int i = (n - 1 - 1) / 2; i >= 0; i--)
  {
    AdjustDown(a, n, i);
  }
  int end = n - 1;
  while (end > 0)
  {
    swap(&a[0], &a[end]);
    AdjustDown(a, end, 0);
    end--;
  }
}
int main()
{
  int a[] = { 7,8,3,5,1,9,5,4 };
  HeapSort(a, sizeof(a) / sizeof(int));
  return 0;
}

代码中int i=(n-1-1)/2是通过孩子找父亲的下标,n是数组大小,先减一得到最后一个下标,再减一除以二得到最后一个孩子的父节点。

这就是向下调整建堆,以后我们用的都是向下调整建堆,不再使用向上调整建堆,这两种方式不仅代码量上有差距,时间复杂度上也有差距,向下调整建堆的时间复杂度更小。

2. 两种建堆方式的时间复杂度比较

2.1 向下调整建堆的时间复杂度

前文中我们知道了,向下调整建堆要保证每个父节点的左右子树都是大堆(小堆),所以我们在调整的时候是从下往上进行的,而最后一层的每个叶节点本身就可以看做一个堆,不用调整,从它们的父节点开始调整(即倒数第二层开始调整),所以时间复杂度如下:

总步数 = ∑(每一层的节点数*该节点需要调整的层数)

2.2 向上调整建堆的时间复杂度

向上调整和向下调整刚好相反,向下调整时,第h-1行的2^(h-2)个节点需向下调整1层,而向上调整时,第h-1行的2^(h-1)个节点需要向上调整h-2,向下调整是大乘小、小乘大,而向上调整时大乘大、小乘小,时间复杂度如下:

以上就是向上调整建堆和向下调整建堆的时间复杂度,那我们整个堆排序的过程的时间复杂度是多少呢?

堆排序过程中,除了建堆还有向下调整选数,当选数时,要首尾交换,交换一次,从头向下调整一次, 所以第h行的2^(h-1)个节点,每次首尾交换时都要调整(h-1)次,一共2^(h-1)*(h-1),由此可见,选数据过程中的时间复杂度和向上调整建堆的时间复杂度保持一致,即为O(N*logN)

所以堆排序整体的时间复杂度是:建堆+选数 = O(N+N*logN),即O(N*logN)。

Topk问题

TOP-K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。
比如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等。
对于Top-K问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排序就不太可取了(可能数据都不能一下子全部加载到内存中)。最佳的方式就是用堆来解决,基本思路如下:

1. 用数据集合中前K个元素来建堆
前k个最大的元素,则建小堆
前k个最小的元素,则建大堆
2. 用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素
将剩余N-K个元素依次与堆顶元素比完之后,堆中剩余的K个元素就是所求的前K个最小或者最大的元素。

比如:我们要找10000个数中的前K个最小的数,就把先把前K个数建小堆,然后把用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素

代码如下:

#define  _CRT_SECURE_NO_WARNINGS 1
#include<stdio.h>
#include<time.h>
#include<stdlib.h>
//Top-K问题
typedef int HeapDatatype;
swap(HeapDatatype* p1, HeapDatatype* p2)
{
  HeapDatatype tmp = *p1;
  *p1 = *p2;
  *p2 = tmp;
}
//向下调整法
void AdjustDown(HeapDatatype* a, int n, int parent)
{
  int child = parent * 2 + 1;
  while (child < n)
  {
    if (child + 1 < n && a[child] > a[child + 1])
    {
      child++;
    }
    if (a[parent] > a[child])
    {
      swap(&a[parent], &a[child]);
      parent = child;
      child = parent * 2 + 1;
    }
    else
    {
      break;
    }
  }
}
void CreateNDate()
{
  // 造数据
  int n = 10000;
  srand(time(0));
  const char* file = "data.txt";
  FILE* fin = fopen(file, "w");
  if (fin == NULL)
  {
    perror("fopen error");
    return;
  }
  for (size_t i = 0; i < n; ++i)
  {
    int x = rand() % 1000000;
    fprintf(fin, "%d\n", x);
  }
  fclose(fin);
}
void PrintTopK(int k)
{
  const char* file = "data.txt";
  FILE* fout = fopen(file, "r");
  if (fout == NULL)
  {
    perror("fopen error");
    return;
  }
  int* kminheap = (int*)malloc(sizeof(int) * k);
  if (kminheap == NULL)
  {
    perror("malloc error");
    return;
  }
  for (int i = 0; i < k; i++)
  {
    fscanf(fout, "%d", &kminheap[i]);
  }
  // 建小堆
  for (int i = (k - 1 - 1) / 2; i >= 0; i--)
  {
    AdjustDown(kminheap, k, i);
  }
  int val = 0;
  while (!feof(fout))
  {
    fscanf(fout, "%d", &val);
    if (val > kminheap[0])
    {
      kminheap[0] = val;
      AdjustDown(kminheap, k, 0);
    }
  }
  for (int i = 0; i < k; i++)
  {
    printf("%d ", kminheap[i]);
  }
  printf("\n");
}
int main()
{
  CreateNDate();
  PrintTopK(5);
  return 0;
}

关于堆排序的所有内容已经学完了,下节我们继续讲二叉树的前序、中序、后序和层序。

未完待续。。。

目录
相关文章
|
6月前
|
算法 Python
数据结构算法--4堆排序
堆排序过程概述:建立大根堆,将堆顶最大元素移出并替换为末尾元素,调整保持堆性质,重复此过程直至堆为空,实现排序。时间复杂度为O(nlogn)。Python中可用heapq模块进行堆操作。
|
2月前
|
算法 搜索推荐
数据结构与算法学习十八:堆排序
这篇文章介绍了堆排序是一种通过构建堆数据结构来实现的高效排序算法,具有平均和最坏时间复杂度为O(nlogn)的特点。
78 0
数据结构与算法学习十八:堆排序
|
2月前
|
算法
数据结构(复杂度)
数据结构(复杂度)
27 0
|
2月前
|
存储 机器学习/深度学习 算法
探索数据结构:入门及复杂度的解锁
探索数据结构:入门及复杂度的解锁
|
2月前
|
算法 Java C语言
【数据结构】后缀(逆波兰)表达式的计算以及中缀转后缀的方法
【数据结构】后缀(逆波兰)表达式的计算以及中缀转后缀的方法
55 0
|
4月前
|
机器学习/深度学习 存储 算法
【初阶数据结构篇】时间(空间)复杂度
复杂度是计算机科学中的一个基础概念,它帮助我们理解和评估算法的效率,对于算法设计和优化至关重要。
48 2
【初阶数据结构篇】时间(空间)复杂度
|
4月前
|
算法
【初阶数据结构】复杂度算法题篇
该方法基于如下的事实:当我们将数组的元素向右移动 k 次后,尾部 kmodn 个元素会移动至数组头部,其余元素向后移动 kmodn 个位置。
30 1
|
5月前
|
存储 算法
【数据结构】堆,堆的实现,堆排序,TOP-K问题
数据结构——堆,堆的实现,堆排序,TOP-K问题
52 1
【数据结构】堆,堆的实现,堆排序,TOP-K问题
|
5月前
|
机器学习/深度学习 存储 算法
【数据结构】算法的复杂度
算法的时间复杂度和空间复杂度
86 1
【数据结构】算法的复杂度
|
4月前
|
搜索推荐 算法
【初阶数据结构篇】插入、希尔、选择、堆排序介绍(上篇)
堆排序(Heapsort)是指利⽤堆积树(堆)这种数据结构所设计的⼀种排序算法,它是选择排序的⼀ 种。它是通过堆来进⾏选择数据。需要注意的是排升序要建⼤堆,排降序建⼩堆。
23 0