1.树的概念及结构
1.1 树的相关概念
下图就是一个树型结构,我们先来了解一下它的相关概念:
节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6
叶节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I...等节点为叶节点
非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G...等节点为分支节点
双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点
孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点
兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点
树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6
节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
树的高度或深度:树中节点的最大层次; 如上图:树的高度为4
堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点
节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先
子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙
森林:由m(m>0)棵互不相交的树的集合称为森林
简单在图中标识一下:
1.2 树的概念
树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。
有一个特殊的结点,称为根结点,根节点没有前驱结点(即没有父节点)
除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i <= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继
因此,树是递归定义的。
可以这样理解:一个树是由父节点和N颗子树构成的,
如下图所示,红圈内的就是子树:
而且每棵子树也能分为父节点和许多子树,所以说树可以递归定义。
但是注意,树型结构中,子树不能有交集,有交集就不能被称为树型结构。
1.3 树的表示
学了树的概念,我们来看看怎么表示树,一个树有很多子节点,但实际上在定义之前,我们并不知道到底有多少子节点,那树应该怎么定义呢?
实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法
等。我们这里就简单的了解其中最常用的孩子兄弟表示法
struct TreNode { struct TreeNode* fristChild;//第一个孩子节点 struct TreeNode* pNextBrother;//指向下一个兄弟节点 int data;//节点中的数据域 };
结构体中有两个指针,分别指向第一个孩子节点和它的下一个兄弟节点,那上文中的树型结构用孩子兄弟表示法表示如下:
图中红线是父子节点之间的连线,蓝线是兄弟节点之间的连线,通过这种方式,只要找到第一个孩子,就能找到他的所有兄弟节点。例如:A中fristChild指针指向它的第一个孩子B,B中的fristChild指向它的第一个孩子C,pNextBrother指向他下一个兄弟节点......
1.4 树在实际中的应用(表示文件系统的目录树结构)
2.二叉树的概念及结构
2.1 概念
一棵二叉树是结点的一个有限集合,该集合:
由一个根节点加上两棵别称为左子树和右子树的二叉树组成
从上图可以看出:
1. 二叉树不存在度大于2的结点。
2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树
注意:对于任意的二叉树都是由以下几种情况复合而成的:
2.2 特殊的二叉树
我们已经知道了二叉树中每个父节点最多只能有2个子节点,下面来看两种特殊的二叉树:
满二叉树:
一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。
完全二叉树:
前h-1层是满的,最后一层可以不满,但是从左到右必须是连续的。
那二叉树在是怎么存储的呢?
2.3 二叉树的存储
我们可以把它的每一层数据按顺序存储到数组中,父节点和子节点之间下标有相应的关系。
由于满二叉树和完全二叉树它的最后一层前的每一层都是满的,所以适合用数组存储,但是如果不是完全二叉树就不适合用数组存储:
3.堆的概念及结构
概念:
堆必须要满足下面两个条件:
1. 完全二叉树。
2. 大堆:树的任何一个父亲都大于等于孩子。
小堆:树的任何一个父亲都小于等于孩子。
下面看一道题目:
1.下列关键字序列为堆的是:()
A 100,60,70,50,32,65
B 60,70,65,50,32,100
C 65,100,70,32,50,60
D 70,65,100,32,50,60
E 32,50,100,70,65,60
F 50,100,70,65,60,32
答案是A,我们画一下图就能很清楚地看出来了,它既满足完全二叉树,也满足大堆条件。
结构:
注意:有序的数组不代表它就是堆,因为堆只规定父亲和孩子的大小,但是没规定左孩子和右孩子的大小。
堆也有它的应用:
1、堆排序 2、topk 3、优先级队列。这些我们在后面的章节讲。