代码随想录算法训练营第四十七天 | LeetCode 198. 打家劫舍、213. 打家劫舍 II、337. 打家劫舍 III

简介: 代码随想录算法训练营第四十七天 | LeetCode 198. 打家劫舍、213. 打家劫舍 II、337. 打家劫舍 III

代码随想录算法训练营第四十七天 | LeetCode 198. 打家劫舍、213. 打家劫舍 II、337. 打家劫舍 III

文章链接:打家劫舍打家劫舍 II打家劫舍 III

视频链接:打家劫舍打家劫舍 II打家劫舍 III

1. LeetCode 198. 打家劫舍

1.1 思路

  1. 我们要去偷钱,但相邻房间不能偷,求最后偷的最大金额。其实我们对于当前房间偷不偷是取决于前一个和前前一个房间的,是一个递推的关系。
  2. dp 数组及其下标的含义:dp[i] 考虑下标 i(包含下标 i),所能偷的最多的金额为 dp[i],最终结果在 dp[nums.length-1]。注意我们是考虑,考虑的仅仅是遍历的范围,取不取由递推公式决定
  3. 递推公式:偷 i 和不偷 i。偷 i 就是只能考虑前前一个房间,即 dp[i-2]+nums[i],i-2 之前的范围加上 i 就是我们的考虑范围。不偷 i 就是考虑前一个房间,即 dp[i-1],i-1 之前的范围就是我们的考虑范围。因此递推公式:dp[i]=Math.max(dp[i-2]+nums[i],dp[i-1])
  4. dp 数组的初始化:根据递推公式,我们的基础就是 dp[0] 和 dp[1],dp[0] 就只能是偷 nums[0],dp[1] 是考虑下标 1 之前的包括下标 1,1 和 0 两个位置取最大值 dp[1]=Math.max(nums[1],nums[0]),其余下标初始化为 0 即可,不影响
  5. 遍历顺序:根据递推公式,就是从前往后比那里的 for(int i=2;i<nums.length;i++)

1.2 代码

// 动态规划
class Solution {
  public int rob(int[] nums) {
    if (nums == null || nums.length == 0) return 0;
    if (nums.length == 1) return nums[0];
    int[] dp = new int[nums.length];
    dp[0] = nums[0];
    dp[1] = Math.max(dp[0], nums[1]);
    for (int i = 2; i < nums.length; i++) {
      dp[i] = Math.max(dp[i - 1], dp[i - 2] + nums[i]);
    }
    return dp[nums.length - 1];
  }
}

2. LeetCode 213. 打家劫舍 II

2.1 思路

  1. 本题和198. 打家劫舍的区别就是环了,之前是一个线性的数组,本题是把这个数组连成环了,首尾相连,其余的都是相同的。关于连成环首尾怎么取,我们可以分成下面三种情况:
  2. 情况 1:首尾都不取,只取中间部分,对于数组是否连成环跟这种情况没有关系,就相当于是线性数组了,直接和我们在198. 打家劫舍处理方式一样
  3. 情况 2:考虑首元素不考虑尾元素,就相当于默认数组没有尾元素了,这样对于数组是否连成环也没有关系了
  4. 情况 3:不考虑首元素考虑尾元素,就相当于默认数组没有首元素了,这样对于数组是否连成环也没有关系了
  5. 关于连成环就是分成了以上三种情况了,但是情况 2 和 3 是包含 1 的。情况 1 是考虑中间部分,情况 2 是考虑首+中间部分,情况 3 是考虑尾+中间部分。注意我们是考虑,不是一定要取,考虑的仅仅是遍历的范围,取不取是由递推公式决定的。因此我们只要求情况 2 的最优解和情况 3 的最优解,两者取最大值即可。我们可以把情况 2 和情况 3 分别传到198. 打家劫舍函数里得到这个线性数组的最大值,两者再取最大值

2.2 代码

class Solution {
    public int rob(int[] nums) {
        if (nums == null || nums.length == 0)
            return 0;
        int len = nums.length;
        if (len == 1)
            return nums[0];
        return Math.max(robAction(nums, 0, len - 1), robAction(nums, 1, len));
    }
    int robAction(int[] nums, int start, int end) {
        int x = 0, y = 0, z = 0;
        for (int i = start; i < end; i++) {
            y = z;
            z = Math.max(y, x + nums[i]);
            x = y;
        }
        return z;
    }
}

3. LeetCode 337. 打家劫舍 III

3.1 思路

  1. 本题和前面不一样的是我们是在一个二叉树上偷,要求也是相邻节点不能偷,就相当于是树形 dp,因此也用到了之前的递归三部曲
  2. dp 数组及其下标的含义:每个节点只有两个状态,偷与不偷,用一个长度为 2 的 dp 数组就可以表示了,dp[0]=不偷,dp[1]=偷。因为我们在遍历二叉树的过程中是通过递归遍历的,系统栈会保存每一层递归里的参数,每一层递归都有一个长度为 2 的 dp 数组,当前层 dp 数组就是表示当前层所遍历这个节点的状态,dp[0] 就是不偷所得的最大金额,dp[1] 就是偷所得的最大金额。而我们是通过后序遍历从底向上遍历的,最后就是根节点偷与不偷两个状态取最大值
  3. 递归函数的参数和返回值:返回值是一个 dp 数组,一维的,长度为 2,参数是 root。我们是通过一个数组来接收这个函数的返回值的。最终是 return Math.max(数组 [0],数组 [1])两个状态取最大值
  4. 递归函数的终止条件:if(root==null)此时偷与不偷的最大金额都是 0,因为是空节点
  5. 遍历顺序:偷与不偷取一个最大值。偷当前节点,左右孩子就不能偷了 int value1=root.val+leftdp[0]+rightdp[0]。这里的leftdp 和rightdp 就是我们通过后序遍历从底往上推的过程得到的,因此要在上面定义 dp 数组 leftdp 和rightdp 通过递归运算得到 leftdp=递归函数(root.left),rightdp=递归函数(root.right),这样就得到了左右孩子偷与不偷的最大值,因此就能得到当前节点偷与不偷的最大值,当前节点偷了那左右孩子就不能偷 int value1=root.val+leftdp[0]+rightdp[0],当前节点不偷那左右孩子考虑能偷,偷不偷取决于左右孩子偷与不偷的最大值是什么,dp[0] 和 dp[1] 哪个大就取哪个 int value2=Math.max(leftdp[0],leftdp[1])+Math.max(rightdp[0],rightdp[1]),最终 return value2,value1 组成的数组,注意两个的位置。并且我们上面的逻辑是"左右中",即后序遍历的逻辑

3.2 代码

// 3.状态标记递归
    // 执行用时:0 ms , 在所有 Java 提交中击败了 100% 的用户
    // 不偷:Max(左孩子不偷,左孩子偷) + Max(又孩子不偷,右孩子偷)
    // root[0] = Math.max(rob(root.left)[0], rob(root.left)[1]) +
    // Math.max(rob(root.right)[0], rob(root.right)[1])
    // 偷:左孩子不偷+ 右孩子不偷 + 当前节点偷
    // root[1] = rob(root.left)[0] + rob(root.right)[0] + root.val;
    public int rob3(TreeNode root) {
        int[] res = robAction1(root);
        return Math.max(res[0], res[1]);
    }
    int[] robAction1(TreeNode root) {
        int res[] = new int[2];
        if (root == null)
            return res;
        int[] left = robAction1(root.left);
        int[] right = robAction1(root.right);
        res[0] = Math.max(left[0], left[1]) + Math.max(right[0], right[1]);
        res[1] = root.val + left[0] + right[0];
        return res;
    }
}
Hsu琛君珩
+关注
目录
打赏
0
0
1
0
9
分享
相关文章
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
这个AI把arXiv变成代码工厂,快速复现顶会算法!Paper2Code:AI论文自动转代码神器,多智能体框架颠覆科研复现
Paper2Code是由韩国科学技术院与DeepAuto.ai联合开发的多智能体框架,通过规划、分析和代码生成三阶段流程,将机器学习论文自动转化为可执行代码仓库,显著提升科研复现效率。
369 19
这个AI把arXiv变成代码工厂,快速复现顶会算法!Paper2Code:AI论文自动转代码神器,多智能体框架颠覆科研复现
18个常用的强化学习算法整理:从基础方法到高级模型的理论技术与代码实现
本文系统讲解从基本强化学习方法到高级技术(如PPO、A3C、PlaNet等)的实现原理与编码过程,旨在通过理论结合代码的方式,构建对强化学习算法的全面理解。
189 10
18个常用的强化学习算法整理:从基础方法到高级模型的理论技术与代码实现
近端策略优化(PPO)算法的理论基础与PyTorch代码详解
近端策略优化(PPO)是深度强化学习中高效的策略优化方法,广泛应用于大语言模型的RLHF训练。PPO通过引入策略更新约束机制,平衡了更新幅度,提升了训练稳定性。其核心思想是在优势演员-评论家方法的基础上,采用裁剪和非裁剪项组成的替代目标函数,限制策略比率在[1-ϵ, 1+ϵ]区间内,防止过大的策略更新。本文详细探讨了PPO的基本原理、损失函数设计及PyTorch实现流程,提供了完整的代码示例。
2139 10
近端策略优化(PPO)算法的理论基础与PyTorch代码详解
JavaScript 中通过Array.sort() 实现多字段排序、排序稳定性、随机排序洗牌算法、优化排序性能,JS中排序算法的使用详解(附实际应用代码)
Array.sort() 是一个功能强大的方法,通过自定义的比较函数,可以处理各种复杂的排序逻辑。无论是简单的数字排序,还是多字段、嵌套对象、分组排序等高级应用,Array.sort() 都能胜任。同时,通过性能优化技巧(如映射排序)和结合其他数组方法(如 reduce),Array.sort() 可以用来实现高效的数据处理逻辑。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
C 语言递归算法:以简洁代码驾驭复杂逻辑
C语言递归算法简介:通过简洁的代码实现复杂的逻辑处理,递归函数自我调用解决分层问题,高效而优雅。适用于树形结构遍历、数学计算等领域。
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
196 1
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
本文提供了几个Linux shell脚本编程问题的解决方案,包括转置文件内容、统计词频、验证有效电话号码和提取文件的第十行,每个问题都给出了至少一种实现方法。
141 6
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
|
11月前
|
【Leetcode刷题Python】剑指 Offer 32 - III. 从上到下打印二叉树 III
本文介绍了两种Python实现方法,用于按照之字形顺序打印二叉树的层次遍历结果,实现了在奇数层正序、偶数层反序打印节点的功能。
113 6
【Leetcode刷题Python】牛客. 数组中未出现的最小正整数
本文介绍了牛客网题目"数组中未出现的最小正整数"的解法,提供了一种满足O(n)时间复杂度和O(1)空间复杂度要求的原地排序算法,并给出了Python实现代码。
233 2

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问