代码随想录算法训练营第三十九天 | LeetCode 62. 不同路径、63. 不同路径 II

简介: 代码随想录算法训练营第三十九天 | LeetCode 62. 不同路径、63. 不同路径 II

代码随想录算法训练营第三十九天 | LeetCode 62. 不同路径、63. 不同路径 II

文章链接:不同路径        不同路径II

视频链接:不同路径        不同路径II

1. LeetCode 62. 不同路径

1.1 思路

  1. 本题是个二维矩阵,因此 dp 数组也定义为二维的,这样才能记录每个格的状态。从起始位置(0,0)到终止位置(m,n)
  2. dp 数组及下标的含义:dp[i][j] 的含义表示从(0,0)出发,到(i,j) 有dp[i][j]条不同的路径。
  3. 递推公式:由于只能向下和向右走,因此 dp[i][j]=dp[i-1][j]+dp[i][j-1]。还是和70. 爬楼梯一样,我们求的是方法数,不是步数,因此不用在这前两个位置的基础上+1。
  4. 初始化 dp 数组:因为中间那些格子需要从左方和上方推导出来的,因此左方和上方的格子都要初始化,即第 0 行和第 0 列,都初始化为 1 即可,因为我们只能往右和往下走,想走完第 0 行和第 0 列,只能一直向右和向下,都是 1 种路径
  5. 遍历顺序:从左往右,从上往下。因为需要依赖上方和左方的值
  6. 打印 dp 数组:用于 debug 验证

1.2 代码

//
/**
     * 1. 确定dp数组下标含义 dp[i][j] 到每一个坐标可能的路径种类
     * 2. 递推公式 dp[i][j] = dp[i-1][j] dp[i][j-1]
     * 3. 初始化 dp[i][0]=1 dp[0][i]=1 初始化横竖就可
     * 4. 遍历顺序 一行一行遍历
     * 5. 推导结果 。。。。。。。。
     *
     * @param m
     * @param n
     * @return
     */
    public static int uniquePaths(int m, int n) {
        int[][] dp = new int[m][n];
        //初始化
        for (int i = 0; i < m; i++) {
            dp[i][0] = 1;
        }
        for (int i = 0; i < n; i++) {
            dp[0][i] = 1;
        }
        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
                dp[i][j] = dp[i-1][j]+dp[i][j-1];
            }
        }
        return dp[m-1][n-1];
    }

2. LeetCode 63. 不同路径 II

2.1 思路

  1. 本题和62. 不同路径的区别在于,在图上多了个障碍
  2. dp 数组及下标的含义:dp[i][j] 的含义表示从(0,0)出发,到(i,j) 有dp[i][j]条不同的路径。和62. 不同路径基本一样
  3. 递推公式:dp[i][j]=dp[i-1][j]+dp[i][j-1] 也是一样的,但是多了个障碍,有了障碍的位置就不能走了,即 if(obstacleGrid[i][j]==0)再进行递推公式dp[i][j]=dp[i-1][j]+dp[i][j-1]
  4. 初始化 dp 数组:这是和62. 不同路径的最大区别,上面是第 0 行和第 0 列都是全 1,但这里如果在第 0 行(列)某个位置有障碍,那么右(下)方的就不是 1 而是 0 了,因为走不到这个位置,因为是只能往下或者往右走
  5. 遍历顺序:从左往右,从上往下。因为需要依赖上方和左方的值
  6. 打印 dp 数组:用于 debug 验证
  7. 注意这里你没必要在上述基础上遍历 dp 数组时加个条件:如果上面有障碍就只加上左边的,如果左边有障碍的就只加上上边的。这个没必要的。因为在有障碍的地方跳过了不给 dp[i][j] 赋值了,那个位置的 dp[i][j] 是为 0 的,后面即使加上也没事。

2.2 代码

//
class Solution {
    public int uniquePathsWithObstacles(int[][] obstacleGrid) {
        int m = obstacleGrid.length;
        int n = obstacleGrid[0].length;
        int[][] dp = new int[m][n];
        //如果在起点或终点出现了障碍,直接返回0
        if (obstacleGrid[m - 1][n - 1] == 1 || obstacleGrid[0][0] == 1) {
            return 0;
        }
        for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) {
            dp[i][0] = 1;
        }
        for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) {
            dp[0][j] = 1;
        }
        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
                dp[i][j] = (obstacleGrid[i][j] == 0) ? dp[i - 1][j] + dp[i][j - 1] : 0;
            }
        }
        return dp[m - 1][n - 1];
    }
}
相关文章
|
10天前
|
算法
分享一些提高二叉树遍历算法效率的代码示例
这只是简单的示例代码,实际应用中可能还需要根据具体需求进行更多的优化和处理。你可以根据自己的需求对代码进行修改和扩展。
|
13天前
|
存储 算法 Java
leetcode算法题-有效的括号(简单)
【11月更文挑战第5天】本文介绍了 LeetCode 上“有效的括号”这道题的解法。题目要求判断一个只包含括号字符的字符串是否有效。有效字符串需满足左括号必须用相同类型的右括号闭合,并且左括号必须以正确的顺序闭合。解题思路是使用栈数据结构,遍历字符串时将左括号压入栈中,遇到右括号时检查栈顶元素是否匹配。最后根据栈是否为空来判断字符串中的括号是否有效。示例代码包括 Python 和 Java 版本。
|
22天前
|
算法 测试技术 开发者
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗;代码审查通过检查源代码发现潜在问题,提高代码质量和团队协作效率。本文介绍了一些实用的技巧和工具,帮助开发者提升开发效率。
25 3
|
21天前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
1月前
|
存储 缓存 算法
如何通过优化算法和代码结构来提升易语言程序的执行效率?
如何通过优化算法和代码结构来提升易语言程序的执行效率?
|
1月前
|
搜索推荐
插入排序算法的讲解和代码
【10月更文挑战第12天】插入排序是一种基础的排序算法,理解和掌握它对于学习其他排序算法以及数据结构都具有重要意义。你可以通过实际操作和分析,进一步深入了解插入排序的特点和应用场景,以便在实际编程中更好地运用它。
|
1月前
|
数据采集 监控 安全
厂区地图导航制作:GIS技术与路径导航算法融合
在智能化、数字化时代,GIS技术为厂区的运营管理带来了革命性变化。本文探讨了如何利用GIS技术,通过数据采集、地图绘制、路径规划、位置定位和信息查询等功能,打造高效、精准的智能厂区地图导航系统,提升企业的竞争力和管理水平。
49 0
厂区地图导航制作:GIS技术与路径导航算法融合
|
27天前
|
缓存 分布式计算 监控
优化算法和代码需要注意什么
【10月更文挑战第20天】优化算法和代码需要注意什么
18 0
|
28天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
5天前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。
下一篇
无影云桌面