代码随想录算法训练营第三十四天 | LeetCode 860. 柠檬水找零、406. 根据身高重建队列、452. 用最少数量的箭引爆气球
文章链接:柠檬水找零 根据身高重建队列 用最少数量的箭引爆气球
视频链接:柠檬水找零 根据身高重建队列 用最少数量的箭引爆气球
1. LeetCode 860. 柠檬水找零
1.1 思路
- 情况 1:如果客户支付 5 就直接收下即可;情况 2:如果客户支付 20 就需要 一张 10 和 一张 5 或者 三张 5 来找零;情况 3:如果客服支付 10 就需要 一张 5 来找零。场景就这三个
- 在情况 1、2 都是固定应对策略,而情况 3 是有两种应对方式,应该优先使用 一张 10 和 一张 5 来应对,因为 10 元只能用来找零这种情况,并且 5 更万能,如果没有再用 三张 5 来找零
- 局部最优:遇到 20 元的情况优先用 10+5 的方式应对
- 全局最优:完成整个账单的找零
- 定义三个变量 five=0,ten=0,twenty=0,twenty 不定义也行
- for(int bill : bills),遍历即可
1.2 代码
// class Solution { public boolean lemonadeChange(int[] bills) { int five = 0; int ten = 0; for (int i = 0; i < bills.length; i++) { if (bills[i] == 5) { five++; } else if (bills[i] == 10) { five--; ten++; } else if (bills[i] == 20) { if (ten > 0) { ten--; five--; } else { five -= 3; } } if (five < 0 || ten < 0) return false; } return true; } }
2. LeetCode 406. 根据身高重建队列
2.1 思路
- 这题思路和135. 分发糖果一样都有两个维度,本题是 h 和 k,因此像那题一样,不能同时考虑,不然那一定会顾此失彼,先确定一个维度再确定另一个维度。本题先确定哪个呢?
- 我们先按照 k 来排序,发现我们既没有把 k 确定下来也没有把 h 确定下来
- 因此我们再按 h 来从大到小排序,如果 h 相同 k 就从小到大排,这种方式起码 h 确定下来了,那我们遍历到每个人的时候前面的身高一定是>=他自己的,如果你想他前面有 k 个身高>=他的话,就把他插入到 k 下标的位置即可。由于我们身高是从大到小排序的,我们插入的时候是从大到小遍历去找 k 位置插入的,后面的一定没有前面高,因此插入后并不影响排序
- 最开始先给数组排序,按 h 从大到小排序,如果 h 相同,k 就从小到大排序(Java 这里要自己实现)
- 定义个二维集合 queue,然后将排完序的数组从头开始遍历,获得 people[i][1] 的插入位置,直接插入到 queue 中即可
- return queue 即可( Java 里需要转换一下)
- 这里不可以做 people 数组上操作,因为可能会操作同一个元素,因为有可能后面的元素已经插入到前面了,原位置还保留着,就可能重复操作
2.2 代码
// class Solution { public int[][] reconstructQueue(int[][] people) { // 身高从大到小排(身高相同k小的站前面) Arrays.sort(people, (a, b) -> { if (a[0] == b[0]) return a[1] - b[1]; // a - b 是升序排列,故在a[0] == b[0]的狀況下,會根據k值升序排列 return b[0] - a[0]; //b - a 是降序排列,在a[0] != b[0],的狀況會根據h值降序排列 }); LinkedList<int[]> que = new LinkedList<>(); for (int[] p : people) { que.add(p[1],p); //Linkedlist.add(index, value),會將value插入到指定index裡。 } return que.toArray(new int[people.length][]); } }
3. LeetCode 452. 用最少数量的箭引爆气球
3.1 思路
- 本题给的二维数组表示的就是气球的左边界和右边界,弓箭是垂直 x 轴往上射的,重叠的气球是可以一起射爆的。
- 局部最优:重叠的气球尽量在一起,用一支弓箭去射
- 全局最优:用了最少的弓箭数
- 本题中没有必要把射爆的气球从数组中移除,只需要记录弓箭数,还有就是如何记录重叠的气球。
- 开始先判断数组的长度如果等于 0 就直接 return 0 即可。然后首先我们要进行排序,可以统一按照左边界排序也可以统一按照右边界排序,都可以。这里统一按照左边界排序,让重叠的气球尽量相邻。定义个 result 记录弓箭数,初始化为 1,因为上面已经判断 0 气球的情况了,起始至少都是有一个气球的,后面有需要再额外++
- 然后是 for 循环遍历,for(int i=1; i<point.length; i++)从 1 开始是因为后面比较是第 i 个和 第 i-1 个比较
- 不重叠的情况:排序后,如果第 i 个气球的左边界大于第 i-1 个气球的右边界 if(point[i][0]>point[i-1][1]),证明一定是不重叠的,就一定需要 result++了。
- 重叠的情况:因为我们已经是针对左边界进行排序了,因此只需要判断右边界即可判断相邻的气球是否重叠了,不重叠就是 if(point[i][0]>point[i-1][1]),else 就是重叠了即相当于如果第 i 个气球的左边界小于等于第 i-1 个气球的右边界(point[i][0]<=point[i-1][1])的情况了,为什么有“等于号”,因为题目描述两个气球如果是相邻的话也是可以一个弓箭射的。
- 现在问题是知道了相邻两个重叠的情况了,那和下一个重不重叠呢?此时就需要更新我们的右边界,两个气球重叠之后,它们整体的右边界应该是取两个气球的右边界的最小值,为什么是最小值?因为如果取最大值,用一个弓箭只能射爆右边那个气球了,只有取右边界的最小值才能射爆两个气球。point[i][1]=Math.min(point[i-1][1],point[i][1])。
- 如果下一个气球的左边界没有大于上面两个气球更新后的右边界,说明和上面两个气球不重合,则上面两个气球就用一支弓箭,这个新的气球就需要另一支弓箭了
3.2 代码
// /** * 时间复杂度 : O(NlogN) 排序需要 O(NlogN) 的复杂度 * 空间复杂度 : O(logN) java所使用的内置函数用的是快速排序需要 logN 的空间 */ class Solution { public int findMinArrowShots(int[][] points) { // 根据气球直径的开始坐标从小到大排序 // 使用Integer内置比较方法,不会溢出 Arrays.sort(points, (a, b) -> Integer.compare(a[0], b[0])); int count = 1; // points 不为空至少需要一支箭 for (int i = 1; i < points.length; i++) { if (points[i][0] > points[i - 1][1]) { // 气球i和气球i-1不挨着,注意这里不是>= count++; // 需要一支箭 } else { // 气球i和气球i-1挨着 points[i][1] = Math.min(points[i][1], points[i - 1][1]); // 更新重叠气球最小右边界 } } return count; } }