代码随想录算法训练营第十九天 | LeetCode 654. 最大二叉树、617. 合并二叉树、700. 二叉搜索树中的搜索、98. 验证二叉搜索树

简介: 代码随想录算法训练营第十九天 | LeetCode 654. 最大二叉树、617. 合并二叉树、700. 二叉搜索树中的搜索、98. 验证二叉搜索树

代码随想录算法训练营第十九天 | LeetCode 654. 最大二叉树、617. 合并二叉树、700. 二叉搜索树中的搜索、98. 验证二叉搜索树

文章链接:代码随想录最大二叉树        代码随想录合并二叉树        代码随想录二叉搜索树中的搜索        代码随想录验证二叉搜索树

视频链接:代码随想录最大二叉树        代码随想录合并二叉树        代码随想录二叉搜索树中的搜索        代码随想录验证二叉搜索树

1. LeetCode 654. 最大二叉树

1.1 思路

  1. 对于这题我们要构造二叉树,凡是构造二叉树类的题目都要用前序遍历,“中左右”,先构造根节点,然后再是左子树右子树,左子树和右子树也是先“中左右”。
  2. 递归函数的参数和返回值:返回值就是这个二叉树的根节点,参数就是数组
  3. 终止条件:如果数组大小等于1说明到叶子节点了,就return new TreeNode(nums[0])。
  4. 单层递归的逻辑:找到数组的最大值及其下标,定义一个maxValue=0,index=0。遍历数组找到它们。找到最大值就定义新节点然后把数值放入,然后就是构造节点的左右子树
  5. 构造子树就要分割数组,因为终止条件是至少要有一个元素的。所以我们要判断左子树是否至少有一个元素(如果左子树没元素,说明就没有左子树咯),通过(index>0)来判断左子树是否至少有一个元素,有就切割数组,新的左子树数组就是[0,index),左闭右开,包含左端点但不包含右端点,右端点是index的,是根节点不是左子树的。然后就是 node.left=函数(新的左子树数组)
  6. 右子树同理,至少有一个元素,理由同上,通过(index<nums.length-1)来判断右子树是否至少有一个元素,有就切割数组,新的右子树数组就是[index+1,nums.length),因为是左闭右开区间,index是根节点的,不是右子树的,而右端点不包含,就可以是nums.length。然后就是node.right=函数(新的右子树数组)
  7. 最后return node就是二叉树的根节点

1.2 代码

class Solution {
    public TreeNode constructMaximumBinaryTree(int[] nums) {
        return constructMaximumBinaryTree1(nums, 0, nums.length);
    }
    public TreeNode constructMaximumBinaryTree1(int[] nums, int leftIndex, int rightIndex) {
        if (rightIndex - leftIndex < 1) {// 没有元素了
            return null;
        }
        if (rightIndex - leftIndex == 1) {// 只有一个元素
            return new TreeNode(nums[leftIndex]);
        }
        int maxIndex = leftIndex;// 最大值所在位置
        int maxVal = nums[maxIndex];// 最大值
        for (int i = leftIndex + 1; i < rightIndex; i++) {
            if (nums[i] > maxVal){
                maxVal = nums[i];
                maxIndex = i;
            }
        }
        TreeNode root = new TreeNode(maxVal);
        // 根据maxIndex划分左右子树
        root.left = constructMaximumBinaryTree1(nums, leftIndex, maxIndex);
        root.right = constructMaximumBinaryTree1(nums, maxIndex + 1, rightIndex);
        return root;
    }
}

2. LeetCode 617. 合并二叉树

2.1 思路

  1. 这题考察同时操作两个二叉树的能力,这题递归的情况还是前序更方便些,也更直观
  2. 递归函数的参数和返回值:返回值就是合并后的二叉树的根节点,参数是一个是二叉树t1,一个是二叉树t2
  3. 终止条件:如果t1遍历到空就返回t2对应位置的节点,如果t2遍历到空就返回t1对应位置的节点
  4. 单层递归的逻辑:我们直接改t1的结构,就不创建新树了。t1.val+=t2.val。然后是递归t1.left=函数(t1.left, t2.left);t1.right=函数(t1.right, t2.right);最后return t1就是新的树了
  5. 如果要创建新树的话就把新树的节点的值为两树之和即可,终止条件是一样的

2.2 代码

class Solution {
    // 递归
    public TreeNode mergeTrees(TreeNode root1, TreeNode root2) {
        if (root1 == null) return root2;
        if (root2 == null) return root1;
        root1.val += root2.val;
        root1.left = mergeTrees(root1.left,root2.left);
        root1.right = mergeTrees(root1.right,root2.right);
        return root1;
    }
}

3. LeetCode 700. 二叉搜索树中的搜索

3.1 递归法思路

  1. 二叉搜索树中自带顺序,因此不强调前中后序。
  2. 确定递归函数的参数和返回值:返回的是对应值的节点,参数是节点和对应值
  3. 终止条件:如果遍历的节点是空或者就是对应数值的节点就return root。
  4. 单层递归的逻辑:创建新的变量节点result=null。如果要搜索的值比root.val小,说明在左子树,就result=函数(root.left, val);果要搜索的值比root.val大,说明在右子树,就result=函数(root.right, val);如果都没有就return result。这是个null

3.2 迭代法思路

  1. 通过while(root!=null)遍历
  2. 如果查找的值比root.val小就向左遍历,root=root.left
  3. 如果查找的值比root.val大就向右遍历,root=root.right
  4. 如果找到了就直接return root
  5. 如果退出循环就说明没找到,就return null

3.3 代码

class Solution {
    // 递归,利用二叉搜索树特点,优化
    public TreeNode searchBST(TreeNode root, int val) {
        if (root == null || root.val == val) {
            return root;
        }
        if (val < root.val) {
            return searchBST(root.left, val);
        } else {
            return searchBST(root.right, val);
        }
    }
}
class Solution {
    // 迭代,利用二叉搜索树特点,优化,可以不需要栈
    public TreeNode searchBST(TreeNode root, int val) {
        while (root != null)
            if (val < root.val) root = root.left;
            else if (val > root.val) root = root.right;
            else return root;
        return null;
    }
}

4. LeetCode 98. 验证二叉搜索树

4.1 思路

  1. 二叉搜索树的遍历最好是中序,因为二叉搜索树的特性“左中右”,先左再中后右就是一个有序的顺序,从小到大的顺序
  2. 递归函数的返回值和参数:返回值boolean,参数就是根节点
  3. 终止条件:如果root是null,就return true,因为空树也是二叉搜索树,同时也是完全二叉树、满二叉树、平衡二叉树
  4. 单层递归的逻辑:定义一个数组,左:函数(root.left),中:把节点值放入数组,右:函数(root.right),然后判断数组是否有序,有序说明是true否则就是false
  5. 更优解:不用创建数组。解题误区:单纯的比较左节点小于中间节点,右节点大于中间节点,这样不全面,我们要比左子树所有节点都大,比右子树所有节点都小
  6. 递归过程:返回值和参数、终止条件同上。定义一个全局变量long prev=Long.MIN_VALUE,表示最小值,因为这题会出现比Integer.MIN_VALUE还小的,只能创建个更小的才行了。
  7. 左:boolean left=函数(root.left)。如果root的值比prev大,prev就更新为root.val,prev就记录了当前节点的前一个节点的数值,因为中序遍历的root的值是递增的,prev就会持续小于root的值,这样root.val就始终比前一个节点大,如果root的值比prev小,这样就不是二叉搜索树了,就return false;
  8. 右:boolean right=函数(root.right)
  9. return left&&right。左右子树要同时符合条件这样才是符合题意的
  10. 如果这里采用前一个节点与后一个节点比较的方式的话,就需要创建一个max节点,初始化为null,如果max不为空并且max.val>=root.val,就返回false。否则就更新为root节点,这样作为记录root的前一个节点,因为root每次递归的时候都是下一个节点了,那么max就是root的前一个节点。这样可以不需要long prev初始化为最小值的方式

4.2 代码

// 简洁实现·中序遍历
class Solution {
    private long prev = Long.MIN_VALUE;
    public boolean isValidBST(TreeNode root) {
        if (root == null) {
            return true;
        }
        if (!isValidBST(root.left)) {
            return false;
        }
        if (root.val <= prev) { // 不满足二叉搜索树条件
            return false;
        }
        prev = root.val;
        return isValidBST(root.right);
    }
}
class Solution {
    // 递归
    TreeNode max;
    public boolean isValidBST(TreeNode root) {
        if (root == null) {
            return true;
        }
        // 左
        boolean left = isValidBST(root.left);
        if (!left) {
            return false;
        }
        // 中
        if (max != null && root.val <= max.val) {
            return false;
        }
        max = root;
        // 右
        boolean right = isValidBST(root.right);
        return right;
    }
}
相关文章
|
10天前
|
算法
分享一些提高二叉树遍历算法效率的代码示例
这只是简单的示例代码,实际应用中可能还需要根据具体需求进行更多的优化和处理。你可以根据自己的需求对代码进行修改和扩展。
|
13天前
|
存储 缓存 算法
如何提高二叉树遍历算法的效率?
选择合适的遍历算法,如按层次遍历树时使用广度优先搜索(BFS),中序遍历二叉搜索树以获得有序序列。优化数据结构,如使用线索二叉树减少空指针判断,自定义节点类增加辅助信息。利用递归与非递归的特点,避免栈溢出问题。多线程并行遍历提高速度,注意线程安全。缓存中间结果,避免重复计算。预先计算并存储信息,提高遍历效率。综合运用这些方法,提高二叉树遍历算法的效率。
36 5
|
16天前
|
机器学习/深度学习 JSON 算法
二叉树遍历算法的应用场景有哪些?
【10月更文挑战第29天】二叉树遍历算法作为一种基础而重要的算法,在许多领域都有着不可或缺的应用,它为解决各种复杂的问题提供了有效的手段和思路。随着计算机科学的不断发展,二叉树遍历算法也在不断地被优化和扩展,以适应新的应用场景和需求。
24 0
|
21天前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
2月前
|
Unix Shell Linux
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
本文提供了几个Linux shell脚本编程问题的解决方案,包括转置文件内容、统计词频、验证有效电话号码和提取文件的第十行,每个问题都给出了至少一种实现方法。
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
|
3月前
|
Python
【Leetcode刷题Python】剑指 Offer 32 - III. 从上到下打印二叉树 III
本文介绍了两种Python实现方法,用于按照之字形顺序打印二叉树的层次遍历结果,实现了在奇数层正序、偶数层反序打印节点的功能。
57 6
|
3月前
|
搜索推荐 索引 Python
【Leetcode刷题Python】牛客. 数组中未出现的最小正整数
本文介绍了牛客网题目"数组中未出现的最小正整数"的解法,提供了一种满足O(n)时间复杂度和O(1)空间复杂度要求的原地排序算法,并给出了Python实现代码。
114 2
|
22天前
|
机器学习/深度学习 人工智能 自然语言处理
280页PDF,全方位评估OpenAI o1,Leetcode刷题准确率竟这么高
【10月更文挑战第24天】近年来,OpenAI的o1模型在大型语言模型(LLMs)中脱颖而出,展现出卓越的推理能力和知识整合能力。基于Transformer架构,o1模型采用了链式思维和强化学习等先进技术,显著提升了其在编程竞赛、医学影像报告生成、数学问题解决、自然语言推理和芯片设计等领域的表现。本文将全面评估o1模型的性能及其对AI研究和应用的潜在影响。
17 1
|
2月前
|
数据采集 负载均衡 安全
LeetCode刷题 多线程编程九则 | 1188. 设计有限阻塞队列 1242. 多线程网页爬虫 1279. 红绿灯路口
本文提供了多个多线程编程问题的解决方案,包括设计有限阻塞队列、多线程网页爬虫、红绿灯路口等,每个问题都给出了至少一种实现方法,涵盖了互斥锁、条件变量、信号量等线程同步机制的使用。
LeetCode刷题 多线程编程九则 | 1188. 设计有限阻塞队列 1242. 多线程网页爬虫 1279. 红绿灯路口
|
3月前
|
索引 Python
【Leetcode刷题Python】从列表list中创建一颗二叉树
本文介绍了如何使用Python递归函数从列表中创建二叉树,其中每个节点的左右子节点索引分别是当前节点索引的2倍加1和2倍加2。
58 7
下一篇
无影云桌面