225.用队列实现栈(LeetCode)

简介: 225.用队列实现栈(LeetCode)

327f20766ad6632ef1452f891e1bfe87_e860ab8d9c044b2a9aff2ee2b9cd2cc6.png


思路

思路:用两个队列实现栈后进先出的特性 ,两个队列为空时,先将数据都导向其中一个队列。

22cffba786a641b1ba4c5eb2d7acbbb4.png


当要模拟出栈时,将前面的元素都导入另一个空队列,再将最后一个元素移出队列


30fccafb37fe4c208a818113d4855c99.png


实现

实现: 因为C语言没有库可以现成使用,所以我们将写好的队列导入


先创建MyStack结构体,包含两个队列结构体。再malloc动态申请MyStack结构体的空间,最后将两个队列传入初始化函数,进行初始化(记得要加上&取地址符号)

dc03290222b54d93a02c8c42839c41c2.png


压栈过程,我们就先判断队列q1是否为空,如果不为空,则往q1中导入数据(因为不为空,证明前面已经有数据放进去了);如果为空,则证明要么两个队列都是空,要么一开始向q2导入了数据,这时我们就将数据导入队列q2中。


一句话总结:谁有数据就放谁,都无数据放q2(一开始随便放哪个都行,这里我们选择q2)


b632e63972134722ae1e55f43c6c4e1d.png

出栈过程,就分为两个部分。第一个部分,是创建空队列和非空队列指针(因为我们不知道此时q1和q2哪个是空,哪个非空),后面加上判断,如果初始赋值错误,则翻转过来。


第二个部分,就是一开始的核心思路,利用循环,将前面的元素都导入另一个空队列,再获取最后一个元素(注意,每次导入一个元素,就要进行出队操作pop)

0c9ccb6d03ae442293ce4257afa5ea81.png


获取栈顶元素,就是出栈过程的删减版,判断完空与非空队列,直接取出非空队列队尾的元素即可

426f2704987a489985cca2615f1c2a02.png


判断栈是否为空,只要当两个队列q1和q2全为空时,栈才为空,返回true,否则返回false

614a3687bcd747f3b21ddc1cf191d428.png


最后,释放栈空间,可能有人只写了最后一句也给过了,但是其实这是不对的。正确做法是,先将两个队列都销毁(销毁链表),再将MyStack空间给释放掉,这样才不会造成内存泄漏

363dbaa33fa5499d86891c7f15cd20ab.png


完整代码附上:


typedef int QDataType;
typedef struct QueueNode
{
  QDataType data;
  struct QueueNode* next;
}QNode;
typedef struct Queue
{
  QNode* phead;
  QNode* ptail;
  int size;
}Queue;
//初始化
void QueueInit(Queue* pq);
//销毁
void QueueDestroy(Queue* pq);
//入队
void QueuePush(Queue* pq, QDataType x);
//出队
void QueuePop(Queue* pq);
//获取队头元素
QDataType QueueFront(Queue* pq);
//获取队尾元素
QDataType QueueBack(Queue* pq);
//检测队列中有效元素个数
int QueueSize(Queue* pq);
//检测队列是否为空
bool QueueEmpty(Queue* pq);
void QueueInit(Queue* pq)
{
  assert(pq);
  pq->phead = NULL;
  pq->ptail = NULL;
  pq->size = 0;
}
void QueueDestroy(Queue* pq)
{
  assert(pq);
  QNode* cur = pq->phead;
  while (cur)
  {
  QNode* next = cur->next;
  free(cur);
  cur = next;
  }
  pq->phead = pq->ptail = NULL;
  pq->size = 0;
}
void QueuePush(Queue* pq, QDataType x)
{
  assert(pq);
  QNode* newnode = (QNode*)malloc(sizeof(QNode));
  if (newnode == NULL)
  {
  perror("malloc fail");
  return;
  }
  newnode->data = x;
  newnode->next = NULL;
  if (pq->ptail == NULL)
  {
  assert(pq->phead == NULL);
  pq->phead = pq->ptail = newnode;
  }
  else
  {
  pq->ptail->next = newnode;
  pq->ptail = newnode;
  }
  pq->size++;
}
void QueuePop(Queue* pq)
{
  assert(pq);
  assert(!QueueEmpty(pq));
  if (pq->phead->next == NULL)
  {
  free(pq->phead);
  pq->phead = pq->ptail = NULL;
  }
  else
  {
  QNode* next = pq->phead->next;
  free(pq->phead);
  pq->phead = next;
  }
  pq->size--;
}
QDataType QueueFront(Queue* pq)
{
  assert(pq);
  return pq->phead->data;
}
QDataType QueueBack(Queue* pq)
{
  assert(pq);
  return pq->ptail->data;
}
int QueueSize(Queue* pq)
{
  assert(pq);
  return pq->size;
}
bool QueueEmpty(Queue* pq)
{
  assert(pq);
  return pq->size == 0;
}
typedef struct {
    Queue q1;
    Queue q2;
} MyStack;
MyStack* myStackCreate() {
    MyStack* obj = (MyStack*)malloc(sizeof(MyStack));
    if (obj == NULL)
    {
        perror("malloc fail");
        return NULL;
    }
    QueueInit(&obj->q1);
    QueueInit(&obj->q2);
    return obj;
}
void myStackPush(MyStack* obj, int x) {
    if (!QueueEmpty(&obj->q1))
    {
        QueuePush(&obj->q1, x);
    }
    else
    {
        QueuePush(&obj->q2, x);
    }
}
int myStackPop(MyStack* obj) {
    Queue* pEmptyQ = &obj->q1;
    Queue* pNonEmptyQ = &obj->q2;
    if (!QueueEmpty(&obj->q1))
    {
        pEmptyQ = &obj->q2;
        pNonEmptyQ = &obj->q1;
    }
    while (QueueSize(pNonEmptyQ) > 1)
    {
        QueuePush(pEmptyQ, QueueFront(pNonEmptyQ));
        QueuePop(pNonEmptyQ);
    }
    int top = QueueFront(pNonEmptyQ);
    QueuePop(pNonEmptyQ);
    return top;
}
int myStackTop(MyStack* obj) {
    Queue* pEmptyQ = &obj->q1;
    Queue* pNonEmptyQ = &obj->q2;
    if (!QueueEmpty(&obj->q1))
    {
        pEmptyQ = &obj->q2;
        pNonEmptyQ = &obj->q1;
    }
    int top = QueueBack(pNonEmptyQ);
    return top;
}
bool myStackEmpty(MyStack* obj) {
    return QueueEmpty(&obj->q1)
    && QueueEmpty(&obj->q2);
}
void myStackFree(MyStack* obj) {
    QueueDestroy(&obj->q1);
    QueueDestroy(&obj->q2);
    free(obj);
}
/**
 * Your MyStack struct will be instantiated and called as such:
 * MyStack* obj = myStackCreate();
 * myStackPush(obj, x);
 * int param_2 = myStackPop(obj);
 * int param_3 = myStackTop(obj);
 * bool param_4 = myStackEmpty(obj);
 * myStackFree(obj);
*/


相关文章
|
3月前
【LeetCode 24】225.用队列实现栈
【LeetCode 24】225.用队列实现栈
19 0
|
3月前
|
算法
【LeetCode 23】232.用栈实现队列
【LeetCode 23】232.用栈实现队列
27 0
|
5月前
|
Python
【Leetcode刷题Python】剑指 Offer 30. 包含min函数的栈
本文提供了实现一个包含min函数的栈的Python代码,确保min、push和pop操作的时间复杂度为O(1)。
36 4
|
5月前
|
Python
【Leetcode刷题Python】剑指 Offer 09. 用两个栈实现队列
使用两个栈实现队列的Python解决方案,包括初始化两个栈、实现在队列尾部添加整数的appendTail方法和在队列头部删除整数的deleteHead方法,以及相应的示例操作。
43 2
|
5月前
|
Python
【Leetcode刷题Python】641.循环双端队列
文章介绍了如何实现一个循环双端队列,包括其操作如插入、删除、获取队首和队尾元素,以及检查队列是否为空或已满,并提供了Python语言的实现代码。
28 0
|
4月前
|
Unix Shell Linux
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
本文提供了几个Linux shell脚本编程问题的解决方案,包括转置文件内容、统计词频、验证有效电话号码和提取文件的第十行,每个问题都给出了至少一种实现方法。
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
|
5月前
|
Python
【Leetcode刷题Python】剑指 Offer 32 - III. 从上到下打印二叉树 III
本文介绍了两种Python实现方法,用于按照之字形顺序打印二叉树的层次遍历结果,实现了在奇数层正序、偶数层反序打印节点的功能。
65 6
|
5月前
|
搜索推荐 索引 Python
【Leetcode刷题Python】牛客. 数组中未出现的最小正整数
本文介绍了牛客网题目"数组中未出现的最小正整数"的解法,提供了一种满足O(n)时间复杂度和O(1)空间复杂度要求的原地排序算法,并给出了Python实现代码。
133 2
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
280页PDF,全方位评估OpenAI o1,Leetcode刷题准确率竟这么高
【10月更文挑战第24天】近年来,OpenAI的o1模型在大型语言模型(LLMs)中脱颖而出,展现出卓越的推理能力和知识整合能力。基于Transformer架构,o1模型采用了链式思维和强化学习等先进技术,显著提升了其在编程竞赛、医学影像报告生成、数学问题解决、自然语言推理和芯片设计等领域的表现。本文将全面评估o1模型的性能及其对AI研究和应用的潜在影响。
57 1
|
4月前
|
数据采集 负载均衡 安全
LeetCode刷题 多线程编程九则 | 1188. 设计有限阻塞队列 1242. 多线程网页爬虫 1279. 红绿灯路口
本文提供了多个多线程编程问题的解决方案,包括设计有限阻塞队列、多线程网页爬虫、红绿灯路口等,每个问题都给出了至少一种实现方法,涵盖了互斥锁、条件变量、信号量等线程同步机制的使用。
LeetCode刷题 多线程编程九则 | 1188. 设计有限阻塞队列 1242. 多线程网页爬虫 1279. 红绿灯路口