一句话塑造一个3D形象,文本生成3D头部模型魔搭最佳实践

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 高保真 3D 人脸重建在许多场景中都有广泛的应用,例如 AR/VR、医疗、电影制作等。尽管大量的工作已经使用 LightStage 等专业硬件实现了出色的重建效果,从单一或稀疏视角的单目图像估计高精细的面部模型仍然是一个具有挑战性的任务。

导读


高保真 3D 人脸重建在许多场景中都有广泛的应用,例如 AR/VR、医疗、电影制作等。尽管大量的工作已经使用 LightStage 等专业硬件实现了出色的重建效果,从单一或稀疏视角的单目图像估计高精细的面部模型仍然是一个具有挑战性的任务。


本文,我们将介绍文本生成3D头部模型,结合了文生图stable diffusion模型和头部重建模型HRN,以文本为输入,可生成高质量3D头部。头部重建模型HRN在单图人脸重建榜单REALY上取得正脸、侧脸双榜第一,并在其他多个数据集中取得了SOTA的效果。


prompt: a girl with freckles and blue eyes.



prompt: a clown with red nose.



该文本生成3D头部模型包含了text-to-image以及head reconstruction两个部分,首先利用sd+controlnet进行文本引导的、姿态可控的人脸图像生成,而后利用HRN算法重建出3D头部,从而实现文生3D头部的功能。


HRN算法简介:

HRN是一种新颖的层次化表征网络,以实现单图的高精细人脸重建。 具体来说,HRN对人脸几何细节进行了解耦并引入了层次表征来实现精细的人脸建模。 同时,结合面部细节的3D先验,提高重建结果的准确性和真实性。HRN还提出了一个de-retouching模块,以实现更好的几何和纹理解耦。 值得注意的是,通过考虑不同视图的细节一致性,HRN框架可以扩展到多视图重建。 在两个单视图和两个多视图人脸重建基准上的大量实验表明,HRN框架方法在重建精度和视觉效果方面优于现有方法。



魔搭社区最佳实践


使用方式


输入文本描述(目前仅支持英文),返回对应符合文本描述的3D模型(.obj文件+纹理贴图)。



模型参数


hair_tex: pipeline参数,可在configuration.json中修改,或者在pipeline初始化中传入,如:


当hair_tex为True时(默认),将输出带头发的纹理,如以上第一个示例。

当hair_tex为False时,将输出光头的纹理,如以上第二个示例.


使用范围


请输入人物描述词,当输入描述词与人无关时,可能会失败。


由于HRN是基于真实人脸的重建模型,所以当目标与真实人头越相近时,效果越好。


目标场景


影视、娱乐等。

最佳实践代码

本模型基于pytorch进行训练和推理,在ModelScope框架上,提供输入描述词,即可以通过简单的Pipeline调用来使用text-to-head模型。

import os
import cv2
from modelscope.models.cv.face_reconstruction.utils import write_obj
from modelscope.outputs import OutputKeys
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
def save_results(result, save_root):
    os.makedirs(save_root, exist_ok=True)
    # export obj and texture
    mesh = result[OutputKeys.OUTPUT]['mesh']
    texture_map = result[OutputKeys.OUTPUT_IMG]
    mesh['texture_map'] = texture_map
    write_obj(os.path.join(save_root, 'text_to_head_result.obj'), mesh)
    print(f'Output written to {os.path.abspath(save_root)}')
text_to_head = pipeline(Tasks.text_to_head, model='damo/cv_HRN_text-to-head', model_revision='v0.2')
result = text_to_head('a clown with red nose')
save_results(result, './text_to_head_results')

预处理


对输入的prompt进行优化,加入后缀描述词,反向描述词等。



后处理


将顶点坐标、三角面片、贴图等数据转化为obj等模型文件。



欢迎开发者们来魔搭社区体验!


点击直达示例开源模型链接

https://www.modelscope.cn/models/damo/cv_HRN_text-to-head/summary



相关文章
|
3月前
|
机器学习/深度学习 人工智能 并行计算
"震撼!CLIP模型:OpenAI的跨模态奇迹,让图像与文字共舞,解锁AI理解新纪元!"
【10月更文挑战第14天】CLIP是由OpenAI在2021年推出的一种图像和文本联合表示学习模型,通过对比学习方法预训练,能有效理解图像与文本的关系。该模型由图像编码器和文本编码器组成,分别处理图像和文本数据,通过共享向量空间实现信息融合。CLIP利用大规模图像-文本对数据集进行训练,能够实现zero-shot图像分类、文本-图像检索等多种任务,展现出强大的跨模态理解能力。
346 2
|
8月前
|
人工智能 自然语言处理 数据处理
AIGC塑造大模型时代的数据标注新生态
AIGC塑造大模型时代的数据标注新生态
209 3
AIGC塑造大模型时代的数据标注新生态
|
13天前
|
人工智能 Python
ImBD:复旦联合华南理工推出 AI 内容检测模型,快速辨别文本内容是否为 AI 生成
ImBD是一款由复旦大学、华南理工大学等机构联合推出的AI内容检测器,能够快速识别机器修订文本,适用于多种场景,显著提升检测性能。
62 8
ImBD:复旦联合华南理工推出 AI 内容检测模型,快速辨别文本内容是否为 AI 生成
|
20天前
|
人工智能 自然语言处理 决策智能
DRT-o1:腾讯推出专注于文学翻译的 AI 模型,擅长理解比喻和隐喻等修辞手法,在翻译时保留原文的情感色彩
DRT-o1 是腾讯研究院推出的文学翻译系列 AI 模型,通过长链思考推理技术显著提升翻译质量,特别擅长处理比喻和隐喻等修辞手法。
50 2
DRT-o1:腾讯推出专注于文学翻译的 AI 模型,擅长理解比喻和隐喻等修辞手法,在翻译时保留原文的情感色彩
|
5月前
|
自然语言处理 语音技术
|
5月前
|
人工智能 JSON 自然语言处理
🔍深度揭秘!如何用提示词驾驭生成式大模型,让你的创意无限飞🌈
【8月更文挑战第1天】在AI风潮中,生成式大模型因出色的内容创造能力备受创意工作者青睐。但如何巧妙运用提示词,激发模型潜力,仍是挑战。本文通过问答形式揭秘提示词技巧:理解其定义、掌握设计方法(明确目标、具象描述、考虑模型特性)、评估其影响力及调整策略(细化描述、变换风格、调节参数),并分享实用贴士,助您成为驾驭AI创作的高手。
251 7
|
5月前
|
机器学习/深度学习 人工智能 搜索推荐
【颠覆传统】解锁记忆新姿势:多模态AI单词助记神器——让单词学习变得生动有趣,打造个性化学习新体验!
【8月更文挑战第21天】多模态AI单词助记模型融合文本、语音与图像,增强英语单词记忆效果。设计上利用多感官刺激提升信息处理与记忆效率。技术栈包括React.js前端、Node.js后端、PyTorch深度学习框架等。实现过程涵盖数据准备、前端开发、后端服务搭建、深度学习模型构建及用户反馈循环。应用显示该模型显著提高学习兴趣与记忆效率,尤其对视觉和听觉学习者有益,个性化推荐系统进一步优化学习体验。
192 0
|
6月前
|
数据采集 边缘计算 自然语言处理
谷歌推出创新方法:通过自然文本提示,快速训练视觉模型
【7月更文挑战第5天】谷歌研究者提出新方法,通过自然语言提示训练视觉模型,减少人工标注需求。"建模合作者"框架结合大型语言模型与视觉语言模型,以对话理解视觉概念并自动生成标注,降低训练成本,提高效率。实验显示定义概念工作量减少90%,并在多种任务上超越现有技术。尽管有限制,但此框架为资源受限环境提供了更高效模型训练方案。[论文链接](https://arxiv.org/abs/2403.02626)
38 1
|
6月前
|
vr&ar 图形学
Sora信息问题之Sora对文本到3D的问题如何解决
Sora信息问题之Sora对文本到3D的问题如何解决
26 0
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
AIGC是什么?对艺术设计学、视觉传达设计、数字媒体艺术等专业的影响
AIGC,人工智能生成内容,融合AI与内容创作,使用GAN、CLIP等技术自动生成图像、文本等,影响艺术设计、视觉传达、数字媒体领域。它提升创作效率,增加多样性,促进创新,改变教育方式,并与Adobe国际认证结合,为设计师提供竞争优势,引领行业变革。

热门文章

最新文章