C++数据结构AVL树

简介: C++数据结构AVL树

AVL树

📟作者主页:慢热的陕西人

🌴专栏链接:C++

📣欢迎各位大佬👍点赞🔥关注🚓收藏,🍉留言

本博客主要内容介绍数据结构中的avl树



AVL树

Ⅰ.avl树

底层结构

前面对map/multimap/set/multiset进行了简单的介绍,在其文档介绍中发现,这几个容器有个 共同点是:其底层都是按照二叉搜索树来实现的,但是二叉搜索树有其自身的缺陷,假如往树中 插入的元素有序或者接近有序,二叉搜索树就会退化成单支树,时间复杂度会退化成O(N),因此 map、set等关联式容器的底层结构是对二叉树进行了平衡处理,即采用平衡树来实现。

Ⅱ. avl树的概念

二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查 找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii 和E.M.Landis在1962年 发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右 子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均 搜索长度。 一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

  • 它的左右子树都是AVL树
  • 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)

  • 如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在 O ( l o g 2 n ) O(log_2 n)O(log2n),搜索时间复杂度O(l o g 2 n log_2 nlog2n)。

Ⅱ. Ⅰ AVL树节点的定义

二叉树节点的定义:

template<class T>
struct AVLTreeNode
{
 AVLTreeNode(const T& data)
     : _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr)
 , _data(data), _bf(0)
 {}
 AVLTreeNode<T>* _pLeft;   // 该节点的左孩子
 AVLTreeNode<T>* _pRight;  // 该节点的右孩子
 AVLTreeNode<T>* _pParent; // 该节点的双亲
 T _data;
 int _bf;                  // 该节点的平衡因子
};

Ⅱ. Ⅱ AVL树的插入

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么 AVL树的插入过程可以分为两步:

bool Insert(const T& data)
{
    // 1. 先按照二叉搜索树的规则将节点插入到AVL树中
    // ...
    // 2. 新节点插入后,AVL树的平衡性可能会遭到破坏,此时就需要更新平衡因子,并检测是否
破坏了AVL树
    //   的平衡性
 /*
 pCur插入后,pParent的平衡因子一定需要调整,在插入之前,pParent
 的平衡因子分为三种情况:-1,0, 1, 分以下两种情况:
  1. 如果pCur插入到pParent的左侧,只需给pParent的平衡因子-1即可
  2. 如果pCur插入到pParent的右侧,只需给pParent的平衡因子+1即可
 此时:pParent的平衡因子可能有三种情况:0,正负1, 正负2
  1. 如果pParent的平衡因子为0,说明插入之前pParent的平衡因子为正负1,插入后被调整
成0,此时满足
     AVL树的性质,插入成功
  2. 如果pParent的平衡因子为正负1,说明插入前pParent的平衡因子一定为0,插入后被更
新成正负1,此
     时以pParent为根的树的高度增加,需要继续向上更新
  3. 如果pParent的平衡因子为正负2,则pParent的平衡因子违反平衡树的性质,需要对其进
行旋转处理
 */
 while (pParent)
 {
        // 更新双亲的平衡因子
 if (pCur == pParent->_pLeft)
 pParent->_bf--;
 else
 pParent->_bf++;
 // 更新后检测双亲的平衡因子
 if (0 == pParent->_bf)
       {    
            break;
       }
 else if (1 == pParent->_bf || -1 == pParent->_bf)
 {
              // 插入前双亲的平衡因子是0,插入后双亲的平衡因为为1 或者 -1 ,说明以双亲
为根的二叉树
              // 的高度增加了一层,因此需要继续向上调整
 pCur = pParent;
 pParent = pCur->_pParent;
 }
 else
 {
 // 双亲的平衡因子为正负2,违反了AVL树的平衡性,需要对以pParent
 // 为根的树进行旋转处理
              if(2 == pParent->_bf)
             {
                  // ...
             }
              else
             {
                  // ...
             }
 }
 }
 return true;
}

Ⅱ. Ⅲ AVL树的旋转

如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构, 使之平衡化。根据节点插入位置的不同,AVL树的旋转分为四种:

①新节点插入较高左子树的左侧—左左:右单旋

/*
上图在插入前,AVL树是平衡的,新节点插入到8的左子树(注意:此处不是左孩子)中,8左
子树增加
了一层,导致以34为根的二叉树不平衡,要让34平衡,只能将34左子树的高度减少一层,右子
树增加一层,
即将左子树往上提,这样34转下来,因为34比8大,只能将其放在8的右子树,而如果8有
右子树,右子树根的值一定大于8,小于34,只能将其放在34的左子树,旋转完成后,更新节点
的平衡因子即可。在旋转过程中,有以下几种情况需要考虑:
  1. 8节点的右孩子可能存在,也可能不存在
  2. 34可能是根节点,也可能是子树
     如果是根节点,旋转完成后,要更新根节点
     如果是子树,可能是某个节点的左子树,也可能是右子树
同学们再此处可举一些详细的例子进行画图,考虑各种情况,加深旋转的理解
*/
void _RotateR(PNode pParent)
{
    // pSubL: pParent的左孩子
    // pSubLR: pParent左孩子的右孩子,注意:该
 PNode pSubL = pParent->_pLeft;
 PNode pSubLR = pSubL->_pRight;
    // 旋转完成之后,8的右孩子作为双亲的左孩子
 pParent->_pLeft = pSubLR;
    // 如果8的左孩子的右孩子存在,更新亲双亲
 if(pSubLR)
 pSubLR->_pParent = pParent;
    // 34 作为 8的右孩子
  pSubL->_pRight = pParent;
    // 因为34可能是棵子树,因此在更新其双亲前必须先保存34的双亲
 PNode pPParent = pParent->_pParent;
    // 更新34的双亲
 pParent->_pParent = pSubL;
    // 更新8的双亲
 pSubL->_pParent = pPParent;
    // 如果34是根节点,根新指向根节点的指针
 if(NULL == pPParent)
 {
 _pRoot = pSubL;
 pSubL->_pParent = NULL;
 }
 else
 {
         // 如果34是子树,可能是其双亲的左子树,也可能是右子树
 if(pPParent->_pLeft == pParent)
 pPParent->_pLeft = pSubL;
 else
 pPParent->_pRight = pSubL;
 }
    // 根据调整后的结构更新部分节点的平衡因子
 pParent->_bf = pSubL->_bf = 0;
}

②新节点插入较高右子树的右侧—右右:左单旋

实现方法和右单旋极其类似

void RotateL(node* parent)
    {
      node* subR = parent->_right;
      node* subRL = subR->_left;
      parent->_right = subRL;
      if (subRL)
        subRL->_parent = parent;
      node* ppnode = parent->_parent;
      subR->_left = parent;
      parent->_parent = subR;
      if (ppnode == nullptr)
      {
        _root = subR;
        _root->_parent = nullptr;
      }
      else
      {
        if (ppnode->_left == parent)
        {
          ppnode->_left = subR;
        }
        else
        {
          ppnode->_right = subR;
        }
        subR->_parent = ppnode;
      }
      parent->_bf = subR->_bf = 0;
    }

③新节点插入较高左子树的右侧—左右:先左单旋再右单旋

将双旋变成单旋后再旋转,即:先对30进行左单旋,然后再对90进行右单旋,旋转完成后再 考虑平衡因子的更新。

void RotateLR(node* parent)
    {
      node* subL = parent->_left;
      node* subLR = subL->_right;
      int bf = subLR->_bf;
      RotateL(parent->_left);
      RotateR(parent);
      //以下更新节点的平衡因子的情况需要通过一个一个画图去分析
      if (bf == 1)
      {
        parent->_bf = 0;
        subLR->_bf = 0;
        subL->_bf = -1;
      }
      else if (bf == -1)
      {
        parent->_bf = 1;
        subLR->_bf = 0;
        subL->_bf = 0;
      }
      else if (bf == 0)
      {
        parent->_bf = 0;
        subLR->_bf = 0;
        subL->_bf = 0;
      }
      else
      {
        assert(false);
      }
    }

④新节点插入较高右子树的左侧—右左:先右单旋再左单旋

void RotateRL(node* parent)
  {
      node* subR = parent->_right;
      node* subRL = subR->_left;
      int bf = subRL->_bf;
      RotateR(parent->_right);
      RotateL(parent);
      //以下更新节点的平衡因子的情况需要通过一个一个画图去分析
      if (bf == 1)
      {
        parent->_bf = -1;
        subRL->_bf = 0;
        subR->_bf = 0;
      }
      else if (bf == -1)
      {
        parent->_bf = 0;
        subRL->_bf = 0;
        subR->_bf = 1;
      }
      else if (bf == 0)
      {
        parent->_bf = 0;
        subRL->_bf = 0;
        subR->_bf = 0;
      }
      else
      {
        assert(false);
      }
    }

Ⅲ. AVL树的验证

AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:

①验证其为二叉搜索树

如果中序遍历可得到一个有序的序列,就说明为二叉搜索树

②验证其为平衡树

  • 每个节点子树高度差的绝对值不超过1(注意节点中如果没有平衡因子)
  • 节点的平衡因子是否计算正确
int _Height(PNode pRoot);
bool _IsBalanceTree(PNode pRoot)
{
 // 空树也是AVL树
 if (nullptr == pRoot) return true;
 // 计算pRoot节点的平衡因子:即pRoot左右子树的高度差
 int leftHeight = _Height(pRoot->_pLeft);
 int rightHeight = _Height(pRoot->_pRight);
 int diff = rightHeight - leftHeight;
 // 如果计算出的平衡因子与pRoot的平衡因子不相等,或者
 // pRoot平衡因子的绝对值超过1,则一定不是AVL树
 if (diff != pRoot->_bf || (diff > 1 || diff < -1))
 return false;
 // pRoot的左和右如果都是AVL树,则该树一定是AVL树
 return _IsBalanceTree(pRoot->_pLeft) && _IsBalanceTree(pRoot-
>_pRight);
 }

③验证用例

请同学们结合上述代码按照以下的数据次序,自己动手画AVL树的创建过程,验证代码 是否有漏洞。

  • 常规场景1
    {16, 3, 7, 11, 9, 26, 18, 14, 15}
  • 特殊场景2
    {4, 2, 6, 1, 3, 5, 15, 7, 16, 14}

Ⅳ.AVL树的性能

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这 样可以保证查询时高效的时间复杂度,即l o g 2 ( N ) log_2 (N)log2(N)。但是如果要对AVL树做一些结构修改的操 作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时, 有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数 据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。

[什么是AVL树][https://zhuanlan.zhihu.com/p/56066942]

到这本篇博客的内容就到此结束了。
如果觉得本篇博客内容对你有所帮助的话,可以点赞,收藏,顺便关注一下!
如果文章内容有错误,欢迎在评论区指正

相关文章
|
2月前
|
存储 算法 C语言
"揭秘C语言中的王者之树——红黑树:一场数据结构与算法的华丽舞蹈,让你的程序效率飙升,直击性能巅峰!"
【8月更文挑战第20天】红黑树是自平衡二叉查找树,通过旋转和重着色保持平衡,确保高效执行插入、删除和查找操作,时间复杂度为O(log n)。本文介绍红黑树的基本属性、存储结构及其C语言实现。红黑树遵循五项基本规则以保持平衡状态。在C语言中,节点包含数据、颜色、父节点和子节点指针。文章提供了一个示例代码框架,用于创建节点、插入节点并执行必要的修复操作以维护红黑树的特性。
66 1
|
2月前
|
安全 编译器 C语言
【C++数据结构】string的模拟实现
【C++数据结构】string的模拟实现
|
6天前
|
JSON 前端开发 JavaScript
一文了解树在前端中的应用,掌握数据结构中树的生命线
该文章详细介绍了树这一数据结构在前端开发中的应用,包括树的基本概念、遍历方法(如深度优先遍历、广度优先遍历)以及二叉树的先序、中序、后序遍历,并通过实例代码展示了如何在JavaScript中实现这些遍历算法。此外,文章还探讨了树结构在处理JSON数据时的应用场景。
一文了解树在前端中的应用,掌握数据结构中树的生命线
|
22天前
|
C语言
数据结构基础详解(C语言):图的基本概念_无向图_有向图_子图_生成树_生成森林_完全图
本文介绍了图的基本概念,包括图的定义、无向图与有向图、简单图与多重图等,并解释了顶点度、路径、连通性等相关术语。此外还讨论了子图、生成树、带权图及几种特殊形态的图,如完全图和树等。通过这些概念,读者可以更好地理解图论的基础知识。
|
24天前
|
存储 算法 C语言
数据结构基础详解(C语言): 二叉树的遍历_线索二叉树_树的存储结构_树与森林详解
本文从二叉树遍历入手,详细介绍了先序、中序和后序遍历方法,并探讨了如何构建二叉树及线索二叉树的概念。接着,文章讲解了树和森林的存储结构,特别是如何将树与森林转换为二叉树形式,以便利用二叉树的遍历方法。最后,讨论了树和森林的遍历算法,包括先根、后根和层次遍历。通过这些内容,读者可以全面了解二叉树及其相关概念。
|
24天前
|
存储 机器学习/深度学习 C语言
数据结构基础详解(C语言): 树与二叉树的基本类型与存储结构详解
本文介绍了树和二叉树的基本概念及性质。树是由节点组成的层次结构,其中节点的度为其分支数量,树的度为树中最大节点度数。二叉树是一种特殊的树,其节点最多有两个子节点,具有多种性质,如叶子节点数与度为2的节点数之间的关系。此外,还介绍了二叉树的不同形态,包括满二叉树、完全二叉树、二叉排序树和平衡二叉树,并探讨了二叉树的顺序存储和链式存储结构。
|
24天前
|
存储 C语言
数据结构基础详解(C语言): 树与二叉树的应用_哈夫曼树与哈夫曼曼编码_并查集_二叉排序树_平衡二叉树
本文详细介绍了树与二叉树的应用,涵盖哈夫曼树与哈夫曼编码、并查集以及二叉排序树等内容。首先讲解了哈夫曼树的构造方法及其在数据压缩中的应用;接着介绍了并查集的基本概念、存储结构及优化方法;随后探讨了二叉排序树的定义、查找、插入和删除操作;最后阐述了平衡二叉树的概念及其在保证树平衡状态下的插入和删除操作。通过本文,读者可以全面了解树与二叉树在实际问题中的应用技巧和优化策略。
|
1月前
|
存储 C++
【C++】AVL树
AVL树是一种自平衡二叉搜索树:它以苏联科学家Georgy Adelson-Velsky和Evgenii Landis的名字命名。
21 2
|
2月前
|
算法
【数据结构】树、二叉树与堆(长期维护)(2)
【数据结构】树、二叉树与堆(长期维护)(2)
【数据结构】树、二叉树与堆(长期维护)(2)
|
3天前
|
算法 安全 测试技术
golang 栈数据结构的实现和应用
本文详细介绍了“栈”这一数据结构的特点,并用Golang实现栈。栈是一种FILO(First In Last Out,即先进后出或后进先出)的数据结构。文章展示了如何用slice和链表来实现栈,并通过golang benchmark测试了二者的性能差异。此外,还提供了几个使用栈结构解决的实际算法问题示例,如有效的括号匹配等。
golang 栈数据结构的实现和应用