redis实现分布式延时队列

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: redis实现分布式延时队列

延时队列简介

延时队列是一种特殊的消息队列,它允许将消息在一定的延迟时间后再进行消费。延时队列的主要特点是可以延迟消息的处理时间,以满足定时任务或者定时事件的需求。

总之,延时队列通过延迟消息的消费时间,提供了一种方便、可靠的方式来处理定时任务和定时事件。它在分布式系统中具有重要的作用,能够提高系统的可靠性和性能。

延时队列的实现方式可以有多种,本文介绍一种redis实现的分布式延时队列。

应用场景

  • 定时任务:可以将需要在特定时间执行的任务封装为延时消息,通过延时队列来触发任务的执行。
  • 订单超时处理:可以将订单消息发送到延时队列中,并设置订单的超时时间,超过时间后,消费者从队列中获取到超时的订单消息,进行相应的处理。
  • 消息重试机制:当某个消息处理失败时,可以将该消息发送到延时队列中,并设置一定的重试时间,超过时间后再次尝试处理。

案例:

12306火车票购买,抢了订单后,45分钟没有支付,自动取消订单

考虑:

数据持久化:redis是支持的,可以使用rdb,也可以使用aof

有序存储:因为只要最小的没过期,后面的肯定就没过期,这样的话检查最小的节点就行了,考虑使用redis中的zset结构

高可用:考虑哨兵或者cluster

高伸缩:因为12306用户量非常大,可能导致redis中存储的任务空间非常大,所以考虑扩展节点,从这个角度来说,使用cluster集群模式,哨兵只有一个节点即主节点写数据。

实现:

整体思路:

  • 生产消费者模型:因为12306的用户量非常大,所以考虑生产者和消费者有多个节点;
  • 采用cluster模式实现高可用以及高伸缩性
  • 采用zset存储延时任务(zadd key score member,score表示时间);
  • 为了让数据均匀分布在cluster集群中的多个主节点中:构建多个zset,每个zset对应一个消费者,生产者随机向某个zset中生产数据。

具体实现

生产者

需要安装hiredis-cluster集群,安装编译如下:

git clone https://github.com/Nordix/hiredis-cluster.git
cd hiredis-cluster
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=RelWithDebInfo -
DENABLE_SSL=ON ..
make
sudo make install
sudo ldconfig

需要安装libevent库,最后编译时执行gcc producer.c -o producer -levent -lhiredis_cluster -lhiredis -lhiredis_ssl编译生产者可执行程序

#include <hiredis_cluster/adapters/libevent.h>
#include <hiredis_cluster/hircluster.h>
#include <event.h>
#include <event2/listener.h>
#include <event2/bufferevent.h>
#include <event2/buffer.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <sys/time.h>
int64_t g_taskid = 0;
#define MAX_KEY 10
static int64_t hi_msec_now() {
    int64_t msec;
    struct timeval now;
    int status;
    status = gettimeofday(&now, NULL);
    if (status < 0) {
        return -1;
    }
    msec = (int64_t)now.tv_sec * 1000LL + (int64_t)(now.tv_usec / 1000LL);
    return msec;
}
static int _vscnprintf(char *buf, size_t size, const char *fmt, va_list args) {
    int n;
    n = vsnprintf(buf, size, fmt, args);
    if (n <= 0) {
        return 0;
    }
    if (n <= (int)size) {
        return n;
    }
    return (int)(size-1);
}
static int _scnprintf(char *buf, size_t size, const char *fmt, ...) {
    va_list args;
    int n;
    va_start(args, fmt);
    n = _vscnprintf(buf, size, fmt, args);
    va_end(args);
    return n;
}
void connectCallback(const redisAsyncContext *ac, int status) {
    if (status != REDIS_OK) {
        printf("Error: %s\n", ac->errstr);
        return;
    }
    printf("Connected to %s:%d\n", ac->c.tcp.host, ac->c.tcp.port);
}
void disconnectCallback(const redisAsyncContext *ac, int status) {
    if (status != REDIS_OK) {
        printf("Error: %s\n", ac->errstr);
        return;
    }
    printf("Disconnected from %s:%d\n", ac->c.tcp.host, ac->c.tcp.port);
}
void addTaskCallback(redisClusterAsyncContext *cc, void *r, void *privdata) {
    redisReply *reply = (redisReply *)r;
    if (reply == NULL) {
        if (cc->errstr) {
            printf("errstr: %s\n", cc->errstr);
        }
        return;
    }
    int64_t now = hi_msec_now() / 10;
    printf("add task success reply: %lld now=%ld\n", reply->integer, now);
}
int addTask(redisClusterAsyncContext *cc, char *desc) {
    /* 转化为厘米秒 */
    int64_t now = hi_msec_now() / 10;
    g_taskid++;
    /* key */
    char key[256] = {0};
  // 为了让数据均匀分布在cluster集群中的多个主节点中:
  // 构建多个zset,每个zset对应一个消费者,生产者随机向某个zset中生产数据,
  // 生产者可以有很多个,只需要保证向task_group:0-task_group:9中均匀的生产数据即可
    int len = _scnprintf(key, 255, "task_group:%ld", g_taskid % MAX_KEY);
    key[len] = '\0';
    /* member */
    char mem[1024] = {0};
    len = _scnprintf(mem, 1023, "task:%ld:%s", g_taskid, desc);
    mem[len] = '\0';
    int status;
  // 为每一个任务延时5秒中去处理
    status = redisClusterAsyncCommand(cc, addTaskCallback, "",
                                      "zadd %s %ld %s", key, now+500, mem);
    printf("redisClusterAsyncCommand:zadd %s %ld %s\n", key, now+500, mem);
    if (status != REDIS_OK) {
        printf("error: err=%d errstr=%s\n", cc->err, cc->errstr);
    }
    return 0;
}
void stdio_callback(struct bufferevent *bev, void *arg) {
    redisClusterAsyncContext *cc = (redisClusterAsyncContext *)arg;
    struct evbuffer *evbuf = bufferevent_get_input(bev);
    char *msg = evbuffer_readln(evbuf, NULL, EVBUFFER_EOL_LF);
    if (!msg) return;
    if (strcmp(msg, "quit") == 0) {
        printf("safe exit!!!\n");
        exit(0);
        return;
    }
    if (strlen(msg) > 1024-5-13-1) {
        printf("[err]msg is too long, try again...\n");
        return;
    }
    addTask(cc, msg);
    printf("stdio read the data: %s\n", msg);
}
int main(int argc, char **argv) {
    printf("Connecting...\n");
  // 连接cluster集群,可以从cluster集群中任意一个节点出发连接集群
    redisClusterAsyncContext *cc =
        redisClusterAsyncConnect("127.0.0.1:7006", HIRCLUSTER_FLAG_NULL);
    printf("redisClusterAsyncContext...\n");
    if (cc && cc->err) {
        printf("Error: %s\n", cc->errstr);
        return 1;
    }
    struct event_base *base = event_base_new();
    redisClusterLibeventAttach(cc, base);
    redisClusterAsyncSetConnectCallback(cc, connectCallback);
    redisClusterAsyncSetDisconnectCallback(cc, disconnectCallback);
    // nodeIterator ni;
    // initNodeIterator(&ni, cc->cc);
    // cluster_node *node;
    // while ((node = nodeNext(&ni)) != NULL) {
    //     printf("node %s:%d role:%d pad:%d\n", node->host, node->port, node->role, node->pad);
    // }
    struct bufferevent *ioev = bufferevent_socket_new(base, 0, BEV_OPT_CLOSE_ON_FREE);
    bufferevent_setcb(ioev, stdio_callback, NULL, NULL, cc);
    bufferevent_enable(ioev, EV_READ | EV_PERSIST);
    printf("Dispatch..\n");
    event_base_dispatch(base);
    printf("Done..\n");
    redisClusterAsyncFree(cc);
    event_base_free(base);
    return 0;
}
// 需要安装 hiredis-cluster libevent
// gcc producer.c -o producer -levent -lhiredis_cluster -lhiredis -lhiredis_ssl

说明:

这里构建了10个zset,分别是task_group:0,task_group:1,…,task_group:9作为10个zset的key,zset的数据其实就代表着消费者的数量,通常消费者的功能是一摸一样的,生产者就不管你有多少个了,只需要将任务均匀的打散在不同的zset中就行了(具体实现可以搞一个全局的id,每一次添加任务时id++,然后再对zset个数10取模,最终可以得到0-9之间的一个数,然后再与task_group拼接,这样就可以将任务均匀的打散在不同的zset中)。

消费者

消费者是采用skynet+lua脚本实现的,每个消费者会不断的去检查redis中的任务有没有过期,如果过期,就取出来删除(这里只是demo,只是打印之后删除任务)

local skynet = require "skynet"
local function table_dump( object )
    if type(object) == 'table' then
        local s = '{ '
        for k,v in pairs(object) do
            if type(k) ~= 'number' then k = string.format("%q", k) end
            s = s .. '['..k..'] = ' .. table_dump(v) .. ','
        end
        return s .. '} '
    elseif type(object) == 'function' then
        return tostring(object)
    elseif type(object) == 'string' then
        return string.format("%q", object)
    else
        return tostring(object)
    end
end
local mode, key = ...
if mode == "slave" then
    local rediscluster = require "skynet.db.redis.cluster"
    local function onmessage(data,channel,pchannel)
        print("onmessage",data,channel,pchannel)
    end
    skynet.start(function ()
        local db = rediscluster.new({
                {host="127.0.0.1",port=7001},
            },
            {read_slave=true,auth=nil,db=0,},
            onmessage
        )
        assert(db, "redis-cluster startup error")
        skynet.fork(function ()
            while true do
                local res = db:zrange(key, 0, 0, "withscores")
                if not next(res) then
                    skynet.sleep(50)
                else
                    local expire = tonumber(res[2])
                    local now = skynet.time()*100
                    if now >= expire then
                        print(("%s is comsumed:expire_time:%d"):format(res[1], expire))
                        db:zrem(key, res[1])
                    else
                        skynet.sleep(10)
                    end
                end
            end
        end)
    end)
else
    skynet.start(function ()  -- // 启动10个程序,并把"slave"传入mode,task_group:i传入到key中,即每个程序只消费一个
        for i=0,9 do
            skynet.newservice(SERVICE_NAME, "slave", "task_group:"..i)

运行结果

redis分布式延时队列优势

1.Redis zset支持高性能的 score 排序。

2.Redis是在内存上进行操作的,速度非常快。

3.Redis可以搭建集群,当消息很多时候,我们可以用集群来提高消息处理的速度,提高可用性。

4.Redis具有持久化机制,当出现故障的时候,可以通过AOF和RDB方式来对数据进行恢复,保证了数据的可靠性

redis分布式延时队列劣势

使用 Redis 实现的延时消息队列也存在数据持久化, 消息可靠性的问题:

  • 没有重试机制 - 处理消息出现异常没有重试机制, 这些需要自己去实现, 包括重试次数的实现等;
  • 没有 ACK 机制 - 例如在获取消息并已经删除了消息情况下, 正在处理消息的时候客户端崩溃了, 这条正在处理的这些消息就会丢失, MQ 是需要明确的返回一个值给 MQ 才会认为这个消息是被正确的消费了。

总结:如果对消息可靠性要求较高, 推荐使用 MQ 来实现

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
目录
相关文章
|
3月前
|
NoSQL Java Redis
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
Redis分布式锁在高并发场景下是重要的技术手段,但其实现过程中常遇到五大深坑:**原子性问题**、**连接耗尽问题**、**锁过期问题**、**锁失效问题**以及**锁分段问题**。这些问题不仅影响系统的稳定性和性能,还可能导致数据不一致。尼恩在实际项目中总结了这些坑,并提供了详细的解决方案,包括使用Lua脚本保证原子性、设置合理的锁过期时间和使用看门狗机制、以及通过锁分段提升性能。这些经验和技巧对面试和实际开发都有很大帮助,值得深入学习和实践。
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
|
1月前
|
存储 NoSQL Java
使用lock4j-redis-template-spring-boot-starter实现redis分布式锁
通过使用 `lock4j-redis-template-spring-boot-starter`,我们可以轻松实现 Redis 分布式锁,从而解决分布式系统中多个实例并发访问共享资源的问题。合理配置和使用分布式锁,可以有效提高系统的稳定性和数据的一致性。希望本文对你在实际项目中使用 Redis 分布式锁有所帮助。
138 5
|
2月前
|
NoSQL Java 数据处理
基于Redis海量数据场景分布式ID架构实践
【11月更文挑战第30天】在现代分布式系统中,生成全局唯一的ID是一个常见且重要的需求。在微服务架构中,各个服务可能需要生成唯一标识符,如用户ID、订单ID等。传统的自增ID已经无法满足在集群环境下保持唯一性的要求,而分布式ID解决方案能够确保即使在多个实例间也能生成全局唯一的标识符。本文将深入探讨如何利用Redis实现分布式ID生成,并通过Java语言展示多个示例,同时分析每个实践方案的优缺点。
77 8
|
2月前
|
NoSQL Redis
Redis分布式锁如何实现 ?
Redis分布式锁通过SETNX指令实现,确保仅在键不存在时设置值。此机制用于控制多个线程对共享资源的访问,避免并发冲突。然而,实际应用中需解决死锁、锁超时、归一化、可重入及阻塞等问题,以确保系统的稳定性和可靠性。解决方案包括设置锁超时、引入Watch Dog机制、使用ThreadLocal绑定加解锁操作、实现计数器支持可重入锁以及采用自旋锁思想处理阻塞请求。
64 16
|
2月前
|
缓存 NoSQL PHP
Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出
本文深入探讨了Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出。文章还介绍了Redis在页面缓存、数据缓存和会话缓存等应用场景中的使用,并强调了缓存数据一致性、过期时间设置、容量控制和安全问题的重要性。
48 5
|
25天前
|
存储 缓存 NoSQL
解决Redis缓存数据类型丢失问题
解决Redis缓存数据类型丢失问题
167 85
|
3月前
|
消息中间件 缓存 NoSQL
Redis 是一个高性能的键值对存储系统,常用于缓存、消息队列和会话管理等场景。
【10月更文挑战第4天】Redis 是一个高性能的键值对存储系统,常用于缓存、消息队列和会话管理等场景。随着数据增长,有时需要将 Redis 数据导出以进行分析、备份或迁移。本文详细介绍几种导出方法:1)使用 Redis 命令与重定向;2)利用 Redis 的 RDB 和 AOF 持久化功能;3)借助第三方工具如 `redis-dump`。每种方法均附有示例代码,帮助你轻松完成数据导出任务。无论数据量大小,总有一款适合你。
89 6
|
22天前
|
缓存 监控 NoSQL
Redis经典问题:缓存穿透
本文详细探讨了分布式系统和缓存应用中的经典问题——缓存穿透。缓存穿透是指用户请求的数据在缓存和数据库中都不存在,导致大量请求直接落到数据库上,可能引发数据库崩溃或性能下降。文章介绍了几种有效的解决方案,包括接口层增加校验、缓存空值、使用布隆过滤器、优化数据库查询以及加强监控报警机制。通过这些方法,可以有效缓解缓存穿透对系统的影响,提升系统的稳定性和性能。
|
2月前
|
缓存 NoSQL 关系型数据库
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
本文详解缓存雪崩、缓存穿透、缓存并发及缓存预热等问题,提供高可用解决方案,帮助你在大厂面试和实际工作中应对这些常见并发场景。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
|
2月前
|
存储 缓存 NoSQL
【赵渝强老师】基于Redis的旁路缓存架构
本文介绍了引入缓存后的系统架构,通过缓存可以提升访问性能、降低网络拥堵、减轻服务负载和增强可扩展性。文中提供了相关图片和视频讲解,并讨论了数据库读写分离、分库分表等方法来减轻数据库压力。同时,文章也指出了缓存可能带来的复杂度增加、成本提高和数据一致性问题。
【赵渝强老师】基于Redis的旁路缓存架构