Hadoop学习笔记:运行wordcount对文件字符串进行统计案例

简介: Hadoop学习笔记:运行wordcount对文件字符串进行统计案例

文/朱季谦

我最近使用四台Centos虚拟机搭建了一套分布式hadoop环境,简单模拟了线上上的hadoop真实分布式集群,主要用于业余学习大数据相关体系。

其中,一台服务器作为NameNode,一台作为Secondary NameNode,剩下两台当做DataNodes节点服务器,类似下面这样一个架构——

NameNode Secondary NameNode DataNodes
master1(192.168.200.111)
master2(192.168.200.112)
slave1(192.168.200.117)
slave2(192.168.200.115)

接下来,就是开始通过hadoop自带的wordcount来统计一下文件当中的字符数量。

启动hadoop集群后,在集群可用情况下,按照以下步骤:

一、进入到hadoop安装目录,创建一个测试文件example.txt

我的安装目录是:/opt/hadoop/app/hadoop/hadoop-2.7.5

[root@192 hadoop-2.7.5]# pwd
/opt/hadoop/app/hadoop/hadoop-2.7.5

新建一个example.txt,并随机写入一些字符:

aaa
bbb
cccc
dedef
dedf
dedf
ytrytrgtrcdscdscdsc
dedaxa
cdsvfbgf
uyiuyi
ss
xaxaxaxa

接着,在hdfs文件系统上新建一个input文件夹,用来存放example.txt文件——

[root@192 hadoop-2.7.5]# hdfs dfs -mkdir /input

然后,将example.txt复制到hdfs系统上的input目录下——

[root@192 hadoop-2.7.5]# hdfs dfs -put example.txt /input

检查一下,可以看到,example.txt文件已经在input目录底下了——

[root@192 hadoop-2.7.5]# hdfs dfs -ls /input
Found 1 items
-rw-r--r--   3 root supergroup         84 2021-10-20 12:43 /input/example.txt

这些准备工作做好后,就可以开始使用hadoop自带的jar包来统计文件example.txt当中各字符的数量了。

二、运行wordcount对文件字符进行统计

直接在NameNode节点对应的服务器上执行——

[root@192 hadoop-2.7.5]# hadoop jar /opt/hadoop/app/hadoop/hadoop-2.7.5/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.5.jar  wordcount /input /output

这行指令的大概意思是,分布式计算统计input目录底下的文件中的字符数量,将统计结果reduce到output当中,故而,最后若执行没问题,可以在output目录下获取到统计结果记录。

我第一次执行时,发生了一个异常,即执行完后,日志运行到INFO mapreduce.Job: Running job: job_1631618032849_0002这一行时,就直接卡在了这里,没有任何动静了——

[hadoop@192 bin]$ hadoop jar /opt/hadoop/app/hadoop/hadoop-2.7.5/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.5.jar wordcount /input /output
21/10/20 10:43:29 INFO client.RMProxy: Connecting to ResourceManager at master1/192.168.200.111:8032
21/10/20 10:43:30 INFO input.FileInputFormat: Total input paths to process : 1
21/10/20 10:43:30 INFO mapreduce.JobSubmitter: number of splits:1
21/10/20 10:43:31 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1631618032849_0002
21/10/20 10:43:31 INFO impl.YarnClientImpl: Submitted application application_1631618032849_0002
21/10/20 10:43:31 INFO mapreduce.Job: The url to track the job: http://master1:8088/proxy/application_1631618032849_0002/
21/10/20 10:43:31 INFO mapreduce.Job: Running job: job_1631618032849_0002

百度了一番后,根据一些思路,最后将mapred-site.xml最开始的配置由

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
    <property>
       <name>mapreduce.framework.name</name>
       <value>yarn</value>
    </property>
</configuration>

改成这里——

<configuration>
    <property>
       <name>mapreduce.job.tracker</name>
       <value>hdfs://master1:8001</value>
       <final>true</final>
    </property>
</configuration>

接着,重启了hadoop集群,就正常了,日志信息就没有卡顿,而是一步执行完成,打印以下的日志记录——

过程如果没有出现问题,就可以到最后一步,查看统计完的结果。

三、获取统计结果

以上步骤执行完后,直接输入指令查看output目录下的信息,可以看到,里面生成了两个文件——

[root@192 hadoop-2.7.5]# hdfs dfs -ls /output
Found 2 items
-rw-r--r--   3 root supergroup          0 2021-10-20 12:47 /output/_SUCCESS
-rw-r--r--   3 root supergroup        101 2021-10-20 12:47 /output/part-r-00000

part-r-00000文件是存放统计结果的,我们查看一下——

[root@192 hadoop-2.7.5]# hdfs dfs -cat /output/part-r-00000
aaa 1
bbb 1
cccc  1
cdsvfbgf  1
dedaxa  1
dedef 1
dedf  2
ss  1
uyiuyi  1
xaxaxaxa  1
ytrytrgtrcdscdscdsc 1

对比前面的example.txt文件,可以看到,当中dedf字符串是有两个,其他都是1个,hadoop统计结果也确实如此。

以上,便是初步认识hadoop的一个小案例,接下来,我会在学习过程当中把值得分享的经验都总结下来。

目录
相关文章
|
4月前
|
SQL 存储 分布式计算
Hadoop-16-Hive HiveServer2 HS2 允许客户端远程执行HiveHQL HCatalog 集群规划 实机配置运行
Hadoop-16-Hive HiveServer2 HS2 允许客户端远程执行HiveHQL HCatalog 集群规划 实机配置运行
86 3
|
4月前
|
分布式计算 资源调度 Hadoop
Hadoop-10-HDFS集群 Java实现MapReduce WordCount计算 Hadoop序列化 编写Mapper和Reducer和Driver 附带POM 详细代码 图文等内容
Hadoop-10-HDFS集群 Java实现MapReduce WordCount计算 Hadoop序列化 编写Mapper和Reducer和Driver 附带POM 详细代码 图文等内容
156 3
|
4月前
|
分布式计算 NoSQL Java
Hadoop-32 ZooKeeper 分布式锁问题 分布式锁Java实现 附带案例和实现思路代码
Hadoop-32 ZooKeeper 分布式锁问题 分布式锁Java实现 附带案例和实现思路代码
81 2
|
4月前
|
分布式计算 资源调度 Hadoop
Hadoop-05-Hadoop集群 集群WordCount 超详细 真正的分布式计算 上传HDFS MapReduce计算 YRAN查看任务 上传计算下载查看
Hadoop-05-Hadoop集群 集群WordCount 超详细 真正的分布式计算 上传HDFS MapReduce计算 YRAN查看任务 上传计算下载查看
84 1
|
5月前
|
分布式计算 Hadoop Devops
Hadoop集群配置https实战案例
本文提供了一个实战案例,详细介绍了如何在Hadoop集群中配置HTTPS,包括生成私钥和证书文件、配置keystore和truststore、修改hdfs-site.xml和ssl-client.xml文件,以及重启Hadoop集群的步骤,并提供了一些常见问题的故障排除方法。
134 3
|
6月前
|
存储 分布式计算 算法
探索Hadoop的三种运行模式:单机模式、伪分布式模式和完全分布式模式
在配置Hadoop集群之前,了解这三种模式的特点、适用场景和配置差异是非常重要的。这有助于用户根据个人需求和资源情况,选择最适合自己的Hadoop运行模式。在最初的学习和开发阶段,单机模式和伪分布式模式能为用户提供便利和成本效益。进而,当用户要处理大规模数据集时,完全分布式模式将是理想的选择。
365 2
|
6月前
|
存储 分布式计算 Hadoop
Hadoop 运行的三种模式
【8月更文挑战第31天】
639 0
|
4月前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
241 6
|
4月前
|
分布式计算 资源调度 Hadoop
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
111 2
|
2月前
|
存储 分布式计算 大数据
Flume+Hadoop:打造你的大数据处理流水线
本文介绍了如何使用Apache Flume采集日志数据并上传至Hadoop分布式文件系统(HDFS)。Flume是一个高可用、可靠的分布式系统,适用于大规模日志数据的采集和传输。文章详细描述了Flume的安装、配置及启动过程,并通过具体示例展示了如何将本地日志数据实时传输到HDFS中。同时,还提供了验证步骤,确保数据成功上传。最后,补充说明了使用文件模式作为channel以避免数据丢失的方法。
85 4

相关实验场景

更多