langchain中的chat models介绍和使用

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: 之前我们介绍了LLM模式,这种模式是就是文本输入,然后文本输出。chat models是基于LLM模式的更加高级的模式。他的输入和输出是格式化的chat messages。一起来看看如何在langchain中使用caht models吧。

简介

之前我们介绍了LLM模式,这种模式是就是文本输入,然后文本输出。

chat models是基于LLM模式的更加高级的模式。他的输入和输出是格式化的chat messages。

一起来看看如何在langchain中使用caht models吧。

chat models的使用

首先langchain对chat models下支持的模型就少很多了。一方面是可能有些语言模型本身是不支持chat models的。另外一方面langchain也还是在一个发展中的过程,所以有些模型还需要适配。

目前看来langchain支持的chat models有:ChatAnthropic,AzureChatOpenAI,ChatVertexAI,JinaChat,ChatOpenAI和PromptLayerChatOpenAI这几种。

langchain把chat消息分成了这几种:AIMessage, HumanMessage, SystemMessage 和 ChatMessage。

HumanMessage就是用户输入的消息,AIMessage是大语言模型的消息,SystemMessage是系统的消息。ChatMessage是一种可以自定义类型的消息。

在使用的时候,只需要在chat中传入对应的消息即可:

from langchain.chat_models import ChatOpenAI

chat = ChatOpenAI()

messages = [
    SystemMessage(content="你是一个小说家"),
    HumanMessage(content="帮我写篇小说")
]
chat(messages)

当然和LLM一样,你也可以使用批量模式如下:

batch_messages = [
    [
        SystemMessage(content="你是一个小说家"),
        HumanMessage(content="帮我写篇小说")
    ],
    [
        SystemMessage(content="你是一个诗人"),
        HumanMessage(content="帮我写首诗")
    ],
]
result = chat.generate(batch_messages)
result

chat models的高级功能

其实和LLM类似,基本上LLM有的高级功能chat models都有。

比如有用的比如缓存功能,可以缓存之前的输入和输出,避免每次都调用LLM,从而可以减少token的开销。

以InMemoryCache为例子:

from langchain.cache import InMemoryCache
langchain.llm_cache = InMemoryCache()

# 第一次调用,不是用cache
llm.predict("Tell me a joke")

# 第二次调用,使用cache
llm.predict("Tell me a joke")

除了InMemoryCache,langchain还支持FullLLMCache,SQLAlchemyCache,SQLiteCache和RedisCache等等。

同样的,chat models也是支持流模式的:

from langchain.chat_models import ChatOpenAI
from langchain.schema import (
    HumanMessage,
)

from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
chat = ChatOpenAI(streaming=True, callbacks=[StreamingStdOutCallbackHandler()], temperature=0)
resp = chat([HumanMessage(content="帮忙我写首诗")])

只需要在构建ChatOpenAI的时候,把StreamingStdOutCallbackHandler传入callbacks即可。

如果要在chat models中使用PromptTemplate,因为chat models的消息格式跟LLM是不一样的,所以对应的PromptTemplate也是不一样的。

和对应的chat models消息对应的PromptTemplate是ChatPromptTemplate,SystemMessagePromptTemplate,
AIMessagePromptTemplate和HumanMessagePromptTemplate。

我们看下是如何使用prompt template来构建prompt:

from langchain import PromptTemplate
from langchain.prompts.chat import (
    ChatPromptTemplate,
    SystemMessagePromptTemplate,
    AIMessagePromptTemplate,
    HumanMessagePromptTemplate,
)

# 构建各种prompt
template="You are a helpful assistant that translates {input_language} to {output_language}."
system_message_prompt = SystemMessagePromptTemplate.from_template(template)
human_template="{text}"
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)

chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])

# 使用format_prompt把prompt传给chat
chat(chat_prompt.format_prompt(input_language="English", output_language="French", text="I love programming.").to_messages())

chat models下消息构建确实比直接使用LLM要复杂点,大家在使用的时候需要注意。

总结

chat models是LLM的高阶表现形式。如果我们需要进行对话模型的话,就可以考虑使用这个。

最通俗的解读,最深刻的干货,最简洁的教程,众多你不知道的小技巧等你来发现!

欢迎关注我的公众号:「程序那些事」,懂技术,更懂你!

相关实践学习
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
相关文章
|
SQL 资源调度 数据库
数仓学习---14、大数据技术之DolphinScheduler
数仓学习---14、大数据技术之DolphinScheduler
|
人工智能 JSON 安全
AI提示词入门教程
前言 在当前的信息时代,人工智能(AI)已成为我们日常生活和工作中不可或缺的一部分。尤其是在处理语言和文本的应用中,AI的效率和能力已经展现出巨大潜力。然而,要充分利用AI的能力,有效地与之交互是关键。本文旨在探讨如何通过合适的提示词来指导AI,以确保任务的准确性和效率。我们将重点讨论基本原则和技巧,这些内容对于任何希望通过AI实现特定目标的用户都是极其有用的。
1081 0
|
6月前
|
人工智能 自然语言处理 数据可视化
DeepSeek使用终极指南:解锁国产大模型的隐藏实力
DeepSeek作为国产大语言模型的佼佼者,支持多模态交互,在编码、数学和逻辑推理等方面表现卓越。本文从基础操作到进阶技巧全面解析其高效使用方法,涵盖精准提问法则、文件交互技巧、高级指令应用等,并提供智能客服、数据分析、教育培训等典型场景实战案例。同时提醒用户注意提问禁忌与安全规范,帮助开发者和普通用户充分挖掘DeepSeek的潜能,提升工作效率,探索智能解决方案。
512 0
|
10月前
|
传感器 机器学习/深度学习 自然语言处理
智能代理(Agent)在工具调用与协作中的应用实践
随着人工智能技术的飞速发展,智能代理(Agent)技术已成为解决复杂任务的关键手段。本文深入探讨了如何设计灵活的工具调用机制和构建高效的单/多Agent系统以提升任务执行效率。文章不仅涵盖了相关的理论知识,还提供了丰富的实践案例和代码实现,旨在帮助读者深入理解和应用智能代理技术。
1090 2
|
11月前
|
SQL 监控 关系型数据库
SQL语句性能分析:实战技巧与详细方法
在数据库管理中,分析SQL语句的性能是优化数据库查询、提升系统响应速度的重要步骤
1040 0
|
前端开发 JavaScript 网络架构
React 中的箭头函数是什么?如何使用?
【8月更文挑战第30天】
214 3
|
存储 测试技术 数据库连接
Python代码结构
【7月更文挑战第16天】Python代码结构
259 2
|
缓存 关系型数据库 MySQL
Django操作MySQL数据库的优化方法
Django操作MySQL数据库的优化方法
352 0
|
人工智能 自然语言处理 开发者
Langchain 与 Elasticsearch:创新数据检索的融合实战
Langchain 与 Elasticsearch:创新数据检索的融合实战