元象开源650亿参数高性能大模型,无条件免费商用!魔搭最佳实践来了!

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 为推动国产大模型开源生态繁荣与产业应用快速发展,元象XVERSE公司宣布 开源650亿参数高性能通用大模型XVERSE-65B,无条件免费商用,业界尚属首次。

导读

为推动国产大模型开源生态繁荣与产业应用快速发展,元象XVERSE公司宣布 开源650亿参数高性能通用大模型XVERSE-65B,无条件免费商用,业界尚属首次。 13B模型全面升级,提高“小”模型能力上限。这将让海量中小企业、研究者和AI开发者 更早一步实现“大模型自由” 根据其算力、资源限制和具体任务需求,自由使用、修改或蒸馏元象大模型,推动研究与应用的突破创新。

XVERSE-65B底座模型在2.6万亿Tokens的高质量数据上从头训练,上下文窗口扩展至16K,支持中、英、俄、法等40多种语言。XVERSE-65B Chat版也将在近期发布。

元象坚持“高性能”定位,显著提升了65B三方面能力:

1、理解、生成、推理和记忆等基础能力,到 模型的多样性、创造性和精度表现,从优异到强大;2、扩展了工具调用、代码解释、反思修正等能力,为构建智能体(AI Agent)奠定技术基础,提高模型实用性;

3、显著缓解7B、13B中常见且可能很严重的幻觉问题,减少大模型“胡说八道”,提高准确性和专业度。

元象XVERSE-65B模型目前在魔搭社区开源,社区已推出模型推理、微调最佳实践教程,欢迎开发者们来体验!

环境配置与安装

  1. python 3.8及以上版本
  2. pytorch 1.12及以上版本,推荐2.0及以上版本
  3. 建议使用CUDA 11.4及以上

使用步骤

本文主要演示的模型为XVERSE-65B模型,在PAI-DSW使用(双卡A100)

模型链接和下载

XVERSE-65B模型现已在ModelScope社区开源,模型链接:

https://modelscope.cn/models/xverse/XVERSE-65B/summary

社区支持直接下载模型的repo:

from modelscope import snapshot_download
model_dir1 = snapshot_download("xverse/XVERSE-65B", revision = "master")

模型推理

推理代码:

import torch
from modelscope import AutoTokenizer, AutoModelForCausalLM, snapshot_download
model_dir = snapshot_download('xverse/XVERSE-65B', revision = 'v1.0.0')
tokenizer = AutoTokenizer.from_pretrained(model_dir)
model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map='auto')
model = model.eval()
inputs = tokenizer('北京的景点:故宫、天坛、万里长城等。\n深圳的景点:', return_tensors='pt').input_ids
inputs = inputs.cuda()
generated_ids = model.generate(inputs, max_new_tokens=64, eos_token_id=tokenizer.eos_token_id, repetition_penalty=1.1)
print(tokenizer.batch_decode(generated_ids, skip_special_tokens=True))

资源消耗:

单卡A100可运行,如果自己的显卡显存不够,可以考虑使用多张3090显卡,或者对模型进行量化。

XVERSE-65B微调和微调后推理

微调代码开源地址: https://github.com/modelscope/swift/tree/main/examples/pytorch/llm

SWFIT是魔搭社区官方提供的LLM&AIGC模型微调推理框架,首先从github上将SWIFT clone下来:

# 设置pip全局镜像和安装相关的python包
pip config set global.index-url https://mirrors.aliyun.com/pypi/simple/
git clone https://github.com/modelscope/swift.git
cd swift
pip install .[llm]
# 下面的脚本需要在此目录下执行
cd examples/pytorch/llm
# 如果你想要使用deepspeed.
pip install deepspeed -U
# 如果你想要使用基于bnb的qlora训练.
pip install bitsandbytes -U

模型微调脚本 (lora+device_map),在4bit量化情况下,LoRA训练该模型需要大约45G显存左右,考虑到家用显卡很难有这么大的显存,因此我们提供了双卡3090可运行的tensor并行训练脚本:

# Experimental environment: 2 * A100
# 2 * 23GB GPU memory
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0,1 \
python llm_sft.py \
    --model_id_or_path xverse/XVERSE-65B \
    --model_revision v1.0.0 \
    --sft_type lora \
    --tuner_backend swift \
    --template_type default-generation \
    --dtype bf16 \
    --output_dir output \
    --dataset dureader-robust-zh \
    --train_dataset_sample -1 \
    --num_train_epochs 1 \
    --max_length 2048 \
    --check_dataset_strategy warning \
    --quantization_bit 4 \
    --bnb_4bit_comp_dtype bf16 \
    --lora_rank 8 \
    --lora_alpha 32 \
    --lora_dropout_p 0.05 \
    --lora_target_modules ALL \
    --gradient_checkpointing true \
    --batch_size 1 \
    --weight_decay 0.01 \
    --learning_rate 1e-4 \
    --gradient_accumulation_steps 16 \
    --max_grad_norm 0.5 \
    --warmup_ratio 0.03 \
    --eval_steps 100 \
    --save_steps 100 \
    --save_total_limit 2 \
    --logging_steps 10 \

模型微调后的推理脚本,请将下面--ckpt_dir的值改为--output_dir中实际存储的模型weights目录。

# Experimental environment: A100
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0 \
python llm_infer.py \
    --ckpt_dir "output/xverse-13b/vx_xxx/checkpoint-xxx" \
    --load_args_from_ckpt_dir true \
    --eval_human false \
    --max_length 2048 \
    --max_new_tokens 2048 \
    --temperature 0.9 \
    --top_k 20 \
    --top_p 0.9 \
    --repetition_penalty 1.05 \
    --do_sample true \
    --merge_lora_and_save false \

微调的可视化结果

训练损失:

image.png

评估损失

9d995bf5-f86b-4e35-92d7-811b51b9d0f3[1].png

训练后生成样例

[PROMPT]Task: Question Generation
Context: 下载速度达到72mbp/s速度相当快。相当于500兆带宽。在网速计算中, b=bit,B=byte 8×b=1×B 意思是 8个小写的b 才是一个大写B。4M理论下载速度:4M就是4Mb/s 理论下载速度公式:4×1024÷8=512KB /s 请注意按公式单位已经变为 KB/s 依此类推: 2M理论下载速度:2×1024÷8=256KB /s 8M理论下载速度:8×1024÷8=1024KB /s =1MB/s 10M理论下载速度:10×1024÷8=1280KB /s =2M理论下载速度+8M理论下载速度 50M理论下载速度:50×1024÷8=6400KB /s 1Gb理论下载速度:1024×1024÷8=128MB /s 公式:几兆带宽×1024÷8=()KB/s。
Answer: 相当于500兆带宽
Question: [OUTPUT]72mbps什么速度<|endoftext|>
[LABELS]72mbps是多少网速
-------------------------------------------------------------------------------
[PROMPT]Task: Question Generation
Context: 下载速度达到72mbp/s速度相当快。相当于500兆带宽。在网速计算中, b=bit,B=byte 8×b=1×B 意思是 8个小写的b 才是一个大写B。4M理论下载速度:4M就是4Mb/s 理论下载速度公式:4×1024÷8=512KB /s 请注意按公式单位已经变为 KB/s 依此类推: 2M理论下载速度:2×1024÷8=256KB /s 8M理论下载速度:8×1024÷8=1024KB /s =1MB/s 10M理论下载速度:10×1024÷8=1280KB /s =2M理论下载速度+8M理论下载速度 50M理论下载速度:50×1024÷8=6400KB /s 1Gb理论下载速度:1024×1024÷8=128MB /s 公式:几兆带宽×1024÷8=()KB/s。
Answer: 500兆带宽
Question: [OUTPUT]72mbps是多少兆<|endoftext|>
[LABELS]72mbps是多少网速
-------------------------------------------------------------------------------
[PROMPT]Task: Question Generation
Context: 我个人感觉是吕颂贤版,剧情和原著差别不大,虽然TVB演员颜值和风光没有大陆的好。但是香港特区人口和地域的限制,只能注重在演员的演技方面发挥很出色,楼主看过大陆排《笑傲江湖》吧!在台词上表现的很生硬没有香港的注重神色配台词,比如杜燕歌把吕颂贤表情和性格几乎和原著差别不大。武打几乎沿用徐克和程小东动作的风格很注重实际技巧,没有大陆版的在武打场面依靠电脑特效表现的太夸张了。李亚鹏版的武打动作和导演还是香港的元彬,大陆毕竟还是在武侠剧起步的比较晚,主要是还是靠明星大腕压阵而香港却是恰恰相反。
Answer: 吕颂贤版
Question: [OUTPUT]哪一版的笑傲江湖好看<|endoftext|>
[LABELS]笑傲江湖哪个版本好看
-------------------------------------------------------------------------------

资源消耗:

image.png

点击直达模型卡片:

https://modelscope.cn/models/xverse/XVERSE-65B/summary

相关文章
|
机器学习/深度学习 人工智能 算法
阿里公开自研AI集群细节:64个GPU,百万分类训练速度提升4倍
从节点架构到网络架构,再到通信算法,阿里巴巴把自研的高性能AI集群技术细节写成了论文,并对外公布。
阿里公开自研AI集群细节:64个GPU,百万分类训练速度提升4倍
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
360Zhinao2-7B:360推出自研360智脑大模型的升级版
360Zhinao2-7B是360自研的AI大模型360智脑7B参数升级版,涵盖基础模型及多种上下文长度的聊天模型。该模型在语言理解与生成、聊天能力、数学逻辑推理等方面表现出色,支持多语言和多上下文长度,适用于多种商业应用场景。
95 23
360Zhinao2-7B:360推出自研360智脑大模型的升级版
|
1月前
|
人工智能
HunyuanVideo:腾讯推出的开源视频生成模型,参数高达130亿
腾讯推出的开源视频生成模型HunyuanVideo,拥有130亿参数,是目前参数量最大的开源视频模型之一。该模型具备物理模拟、高文本语义还原度、动作一致性和电影级画质等特性,能生成带有背景音乐的视频,推动了视频生成技术的发展和应用。
141 16
HunyuanVideo:腾讯推出的开源视频生成模型,参数高达130亿
|
机器学习/深度学习 人工智能 自然语言处理
性能超越Llama2-13B,可免费商用,姚星创业公司开源百亿参数通用大模型
性能超越Llama2-13B,可免费商用,姚星创业公司开源百亿参数通用大模型
506 0
|
2月前
|
弹性计算 人工智能 自然语言处理
魔搭社区与函数计算:高效部署开源大模型的文本生成服务体验
在数字化时代,人工智能技术迅速发展,开源大模型成为重要成果。魔搭社区(ModelScope)作为开源大模型的聚集地,结合阿里云函数计算,提供了一种高效、便捷的部署方式。通过按需付费和弹性伸缩,开发者可以快速部署和使用大模型,享受云计算的便利。本文介绍了魔搭社区与函数计算的结合使用体验,包括环境准备、部署应用、体验使用和资源清理等步骤,并提出了改进建议。
|
人工智能 编解码 文字识别
通义千问720亿参数模型开源,适配企业级、科研级高性能应用
通义千问720亿参数模型开源,适配企业级、科研级高性能应用
1879 0
|
5月前
|
人工智能 Swift 决策智能
社区供稿 | 面向多样应用需求,书生·浦语2.5开源超轻量、高性能多种参数版本
在 2024 年 7 月 4 日的 WAIC 科学前沿主论坛上,上海人工智能实验室推出了书生·浦语系列模型的全新版本——InternLM2.5。
|
6月前
|
自然语言处理 API Android开发
阿里Qwen2-72B大模型已是开源榜的王者,为什么还要推出其他参数模型,被其他模型打榜?
阿里云的Qwen2-72B模型在Hugging Face上荣登开源模型榜首,展现卓越性能,超越其他包括Meta的Llama-3在内的竞争者。Qwen2有多个参数版本,其中72B版本在自然语言理解、知识、代码等任务上表现出色。较小参数版本如7B模型在某些方面略逊一筹。推出不同参数模型可能是为了降低成本、加速迭代、构建丰富的模型生态。通过提供不同规模的模型,阿里云旨在促进技术研究和全场景应用,类似于微软Windows XP和阿里云OS生态的构建策略。
385 1
|
8月前
|
人工智能 物联网 测试技术
以小博大,微软开源27亿参数模型Phi-2,魔搭最佳实践来啦!
近日,微软公布了在 Microsoft Ignite 2023大会上宣布开源的 Phi-2 模型的更多细节,“打破传统语言模型缩放定律,可PK比自己大25倍的模型”、“以小博大”等评价,让Phi-2一时间在开源社区中引发关注。
|
8月前
|
存储 机器学习/深度学习 人工智能
社区供稿 | Yuan2.0千亿大模型在通用服务器上的高效推理实现:以NF8260G7服务器为例
浪潮信息联合Intel在IPF大会上发布了可运行千亿参数大模型的AI通用服务器,首次实现了单机通用服务器,即可运行千亿参数大模型。并在发布现场演示了基于NF8260G7服务器进行yuan2.0-102B模型在代码编写、逻辑推理等高难度问题上的实时推理效果,引起了业界广泛的关注。本文将详细解读yuan2.0-102B模型在NF8260G7服务器上进行高效实时推理的原理和技术路径。

热门文章

最新文章