提高代码质量,避免内存泄漏:深入探索Valgrind工具

简介: 提高代码质量,避免内存泄漏:深入探索Valgrind工具

前言:用于内存调试、内存泄漏检测以及性能分析的软件开发工具,Valgrind是一款用于内存调试、内存泄漏检测以及性能分析的软件开发工具。

一、Valgrind概述

Valgrind是一套Linux下,开放源代码(GPL V2)的仿真调试工具的集合。Valgrind由内核(core)以及基于内核的其余调试工具组成。内核相似于一个框架(framework),它模拟了一个CPU环境,并提供服务给其余工具;而其余工具则相似于插件 (plug-in),利用内核提供的服务完成各类特定的内存调试任务。

Valgrind的体系结构以下图所示:

1.1安装过程

去以下链接下载安装文件下载链接,下载完成后解压,终端进入解压后的文件夹,依次输入

./configure
make
make install

如遇提示权限不够,make前加sudo

如果想验证是否安装完成,在终端输入valgrind --version,若安装成功,会输出相应版本,如图

检测内存泄漏

终端进入可执行文件所在的文件夹,输入

valgrind --tool=memcheck 
--leak-check=full 
--show-leak-kinds=all 
--undef-value-errors=no 
--log-file=log ./可执行文件名

即可在终端所在文件夹下生成log文件,如图:

在log文件最后会有个summary,其中对内存泄露进行了分类,总共有五类:

(1) “definitely lost” 意味着你的程序一定存在内存泄露;

(2)”indirectly lost”意味着你的程序一定存在内存泄露,并且泄露情况和指针结构相关

(3) “possibly lost” 意味着你的程序一定存在内存泄露,除非你是故意进行着不符合常规的操作,例如将指针指向某个已分配内存块的中间位置。

(4) “still reachable” 意味着你的程序可能是没问题的,但确实没有释放掉一些本可以释放的内存。这种情况是很常见的,并且通常基于合理的理由。

(5)”suppressed” 意味着有些泄露信息被压制了。在默认的 suppression 文件中可以看到一些 suppression 相关设置。

其中,如果二叉树的根节点被判定为”definitely lost”,则其所有子节点将被判定为”indirectly lost”,而如果你正确修复了类型为 “definitely lost” 的根节点泄露,那么类型为 “indirectly lost” 的子节点泄露也会随着消失。

对于如上图所示的情况,posslbly lost其实并没有造成内存上的影响,如果想要过滤掉该类报告信息,可以加入--show-possibly-lost=no ,而对于”still reachable” ,同样可以通过--show-reachable=yes来控制是否输出相应的信息。

如果某些需要的库没有找到,用指令进行添加

export LD_LIBRARY_PATH=/usr/local/mysql/lib:$LD_LIBRARY_PATH

查看发生泄露的具体位置

在log中由summary往上翻即可看到对应的错误,错误是不断细化的,比如:

这样的是一个错误,先告诉你出现了多少的内存泄露,然后从最里层不断往外部函数显示:先说是calloc造成的错误,然后不断往外部函数显示。可以从下往上进行查看,比如先说main()函数发生了泄露,往上看到是main()中的init()函数,再往上init()中的init_detectionmodel,如此不断细定位泄露位置。

1.2工具

Valgrind的最新版是3.11.0,它一般包含下列工具:

(1)Memcheck

最经常使用的工具,用来检测程序中出现的内存问题,全部对内存的读写都会被检测到,一切对malloc()/free()/new/delete的调用都会被捕获。因此,它能检测如下问题:

  • 未初始化内存的使用;
  • 读/写释放后的内存块;
  • 读/写超出malloc分配的内存块;
  • 读/写不适当的栈中内存块;
  • 内存泄漏,指向一块内存的指针永远丢失;
  • 不正确的malloc/free或new/delete匹配;
  • memcpy()相关函数中的dst和src指针重叠。

(2)Callgrind

和gprof类似的分析工具,但它对程序的运行观察更是入微,能给我们提供更多的信息。和gprof不同,它不需要在编译源代码时附加特殊选项,但加上调试选项是推荐的。Callgrind收集程序运行时的一些数据,建立函数调用关系图,还可以有选择地进行cache模拟。在运行结束时,它会把分析数据写入一个文件。callgrind_annotate可以把这个文件的内容转化成可读的形式。

(3)Cachegrind

Cache分析器,它模拟CPU中的一级缓存I1,Dl和二级缓存,能够精确地指出程序中cache的丢失和命中。如果需要,它还能够为我们提供cache丢失次数,内存引用次数,以及每行代码,每个函数,每个模块,整个程序产生的指令数。这对优化程序有很大的帮助。

(4)Helgrind

它主要用来检查多线程程序中出现的竞争问题。Helgrind寻找内存中被多个线程访问,而又没有一贯加锁的区域,这些区域往往是线程之间失去同步的地方,而且会导致难以发掘的错误。Helgrind实现了名为“Eraser”的竞争检测算法,并做了进一步改进,减少了报告错误的次数。不过,Helgrind仍然处于实验阶段。

(5)Massif

堆栈分析器,它能测量程序在堆栈中使用了多少内存,告诉我们堆块,堆管理块和栈的大小。Massif能帮助我们减少内存的使用,在带有虚拟内存的现代系统中,它还能够加速我们程序的运行,减少程序停留在交换区中的几率。此外,lackey和nulgrind也会提供。Lackey是小型工具,很少用到;Nulgrind只是为开发者展示如何创建一个工具。

1.3原理

Memcheck 能够检测出内存问题,关键在于其建立了两个全局表。Valid-Value 表对于进程的整个地址空间中的每一个字节(byte),都有与之对应的 8 个 bits;对于CPU的每个寄存器,也有一个与之对应的bit向量。这些bits负责记录该字节或者寄存器值是否具有有效的、已初始化的值。

Valid-Address表:对于进程整个地址空间中的每一个字节(byte),还有与之对应的1个bit,负责记录该地址是否能够被读写。

检测原理:当要读写内存中某个字节时,首先检查这个字节对应的 A bit。如果该A bit显示该位置是无效位置,memcheck则报告读写错误。

内核(core)类似于一个虚拟的 CPU 环境,这样当内存中的某个字节被加载到真实的 CPU 中时,该字节对应的 V bit 也被加载到虚拟的 CPU 环境中。一旦寄存器中的值,被用来产生内存地址,或者该值能够影响程序输出,则 memcheck 会检查对应的V bits,如果该值尚未初始化,则会报告使用未初始化内存错误。

1.4命令介绍

用法:valgrind[options] prog-and-args [options]: 常用选项,适用于所有Valgrind工具:

  1. -tool=<name> 最常用的选项。运行 valgrind中名为toolname的工具。默认memcheck。
  2. h –help 显示帮助信息。
  3. -version 显示valgrind内核的版本,每个工具都有各自的版本。
  4. q –quiet 安静地运行,只打印错误信息。
  5. v –verbose 更详细的信息, 增加错误数统计。
  6. -trace-children=no|yes 跟踪子线程? [no]
  7. -track-fds=no|yes 跟踪打开的文件描述?[no]
  8. -time-stamp=no|yes 增加时间戳到LOG信息? [no]
  9. -log-fd=<number> 输出LOG到描述符文件 [2=stderr]
  10. -log-file=<file> 将输出的信息写入到filename.PID的文件里,PID是运行程序的进行ID
  11. -log-file-exactly=<file> 输出LOG信息到 file
  12. -log-file-qualifier=<VAR> 取得环境变量的值来做为输出信息的文件名。[none]
  13. -log-socket=ipaddr:port 输出LOG到socket ,ipaddr:port

LOG信息输出:

  1. -xml=yes 将信息以xml格式输出,只有memcheck可用
  2. -num-callers=<number> show <number> callers in stack traces [12]
  3. -error-limit=no|yes 如果太多错误,则停止显示新错误? [yes]
  4. -error-exitcode=<number> 如果发现错误则返回错误代码 [0=disable]
  5. -db-attach=no|yes 当出现错误,valgrind会自动启动调试器gdb。[no]
  6. -db-command=<command> 启动调试器的命令行选项[gdb -nw %f %p]

适用于Memcheck工具的相关选项:

  1. -leak-check=no|summary|full 要求对leak给出详细信息? [summary]
  2. -leak-resolution=low|med|high how much bt merging in leak check [low]
  3. -show-reachable=no|yes show reachable blocks in leak check? [no]
【文章福利】小编推荐自己的Linux内核技术交流群:【 865977150】整理了一些个人觉得比较好的学习书籍、视频资料共享在群文件里面,有需要的可以自行添加哦!!!

二、应用实践

下面通过介绍几个范例来说明如何使用Memcheck ,示例仅供参考,更多用途可在实际应用中不断探索。

2.1数组越界/内存未释放

#include<stdlib.h>
void k(void)
{
int *x = malloc(8 * sizeof(int));
x[9] = 0;              //数组下标越界
}                        //内存未释放
int main(void)
{
    k();
return 0;
}

1)编译程序test.c

gcc -Wall test.c -g -o test#Wall提示所有告警,-g gdb,-o输出

2)使用Valgrind检查程序BUG

valgrind --tool=memcheck --leak-check=full ./test
#--leak-check=full 所有泄露检查

3) 运行结果如下:

==2989== Memcheck, a memory error detector
==2989== Copyright (C) 2002-2012, and GNU GPL'd, by Julian Seward
et al.
==2989== Using Valgrind-3.8.1 and LibVEX; rerun with -h for
copyright info
==2989== Command: ./test
==2989==
==2989==  Invalid write of size 4
==2989==    at 0x4004E2: k (test.c:5)
==2989==    by 0x4004F2: main (test.c:10)
==2989==  Address 0x4c27064 is 4 bytes after a block of size 32 alloc'd
==2989==    at 0x4A06A2E: malloc (vg_replace_malloc.c:270)
==2989==    by 0x4004D5: k (test.c:4)
==2989==    by 0x4004F2: main (test.c:10)
==2989==
==2989==
==2989== HEAP SUMMARY:
==2989==    in use at exit: 32 bytes in 1 blocks
==2989==  total heap usage: 1 allocs, 0 frees, 32 bytes allocated
==2989==
==2989== 32 bytes in 1 blocks are definitely lost in loss record 1
of 1
==2989==    at 0x4A06A2E: malloc (vg_replace_malloc.c:270)
==2989==    by 0x4004D5: k (test.c:4)
==2989==    by 0x4004F2: main (test.c:10)
==2989==
==2989== LEAK SUMMARY:
==2989==    definitely lost: 32 bytes in 1 blocks
==2989==    indirectly lost: 0 bytes in 0 blocks
==2989==      possibly lost: 0 bytes in 0 blocks
==2989==    still reachable: 0 bytes in 0 blocks
==2989==suppressed: 0 bytes in 0 blocks
==2989==
==2989== For counts of detected and suppressed errors, rerun with: -v
==2989== ERROR SUMMARY: 2 errors from 2 contexts
(suppressed: 6 from 6)

2.2内存释放后读写

#include <stdio.h>
#include <stdlib.h>
int main(void)
{
char *p = malloc(1);    //分配
*p = 'a';
char c = *p;
printf("\n [%c]\n",c);
free(p);        //释放
    c = *p;        //取值
return 0;
}

1)编译程序t2.c

gcc -Wall t2.c -g -o t2

2)使用Valgrind检查程序BUG

valgrind --tool=memcheck --leak-check=full ./t2

3) 运行结果如下:

==3058== Memcheck, a memory error detector
==3058== Copyright (C) 2002-2012, and GNU GPL'd, by Julian
Seward et al.
==3058== Using Valgrind-3.8.1 and LibVEX; rerun with -h
for copyright info
==3058== Command: ./t2
==3058==
      [a]
==3058== Invalid read of size 1
==3058==    at 0x4005A3: main (t2.c:14)
==3058==  Address 0x4c27040 is 0 bytes inside a block of size
1 free'd
==3058==    at 0x4A06430: free (vg_replace_malloc.c:446)
==3058==    by 0x40059E: main (t2.c:13)
==3058==
==3058==
==3058== HEAP SUMMARY:
==3058==    in use at exit: 0 bytes in 0 blocks
==3058==  total heap usage: 1 allocs, 1 frees, 1 bytes allocated
==3058==
==3058== All heap blocks were freed -- no leaks are possible
==3058==
==3058== For counts of detected and suppressed errors, rerun with:
 -v
==3058== ERROR SUMMARY: 1 errors from 1 contexts
(suppressed: 6 from 6)
从上输出内容可以看到,Valgrind检测到无效的读取操作然后输出“Invalid read of size 1”。

2.3无效读写

#include <stdio.h>
#include <stdlib.h>
int main(void)
{
   char *p = malloc(1);    //分配1字节
   *p = 'a';
   char c = *(p+1);        //地址加1
   printf("\n [%c]\n",c); 
   free(p);
   return 0;
}

1)编译程序t3.c

gcc -Wall t3.c -g -o t3

2)使用Valgrind检查程序BUG

valgrind --tool=memcheck --leak-check=full ./t3

3) 运行结果如下:

==3128== Memcheck, a memory error detector
==3128== Copyright (C) 2002-2012, and GNU GPL'd, by Julian Seward et al.
==3128== Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info
==3128== Command: ./t3
==3128==
==3128==  Invalid read of size 1        #无效读取
==3128==at 0x400579: main (t3.c:9)
==3128==Address 0x4c27041 is 0 bytes after a block of size 1 alloc'd
==3128==at 0x4A06A2E: malloc (vg_replace_malloc.c:270)
==3128==by 0x400565: main (t3.c:6)
==3128==
[]
==3128==
==3128== HEAP SUMMARY:
==3128==in use at exit: 0 bytes in 0 blocks
==3128==total heap usage: 1 allocs, 1 frees, 1 bytes allocated
==3128==
==3128== All heap blocks were freed -- no leaks are possible
==3128==
==3128== For counts of detected and suppressed errors, rerun with: -v
==3128== ERROR SUMMARY: 1 errors from 1 contexts
(suppressed: 6 from 6)

2.4内存泄露

#include <stdio.h>
#include <stdlib.h>
int main(void)
{
int *p = malloc(1);
*p = 'x';
char c = *p;
printf("%c\n",c);        //申请后未释放
    return 0;
}

1)编译程序t4.c

gcc -Wall t4.c -g -o t4

2)使用Valgrind检查程序BUG

valgrind --tool=memcheck --leak-check=full ./t4

3) 运行结果如下:

==3221== Memcheck, a memory error detector
==3221== Copyright (C) 2002-2012, and GNU GPL'd, by Julian Seward et al.
==3221== Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info
==3221== Command: ./t4
==3221==
==3221== Invalid write of size 4
==3221==at 0x40051E: main (t4.c:7)
==3221==Address 0x4c27040 is 0 bytes inside a block of size 1 alloc'd
==3221==at 0x4A06A2E: malloc (vg_replace_malloc.c:270)
==3221==by 0x400515: main (t4.c:6)
==3221==
==3221== Invalid read of size 4
==3221==at 0x400528: main (t4.c:8)
==3221==Address 0x4c27040 is 0 bytes inside a block of size 1 alloc'd
==3221==at 0x4A06A2E: malloc (vg_replace_malloc.c:270)
==3221==by 0x400515: main (t4.c:6)
==3221==
x
==3221==
==3221== HEAP SUMMARY:
==3221==in use at exit: 1 bytes in 1 blocks
==3221==total heap usage: 1 allocs, 0 frees, 1 bytes allocated
==3221==
==3221== 1 bytes in 1 blocks are definitely lost in loss record 1 of 1
==3221==at 0x4A06A2E: malloc (vg_replace_malloc.c:270)
==3221==by 0x400515: main (t4.c:6)
==3221==
==3221== LEAK SUMMARY:
==3221==definitely lost: 1 bytes in 1 blocks
==3221==indirectly lost: 0 bytes in 0 blocks
==3221==      possibly lost: 0 bytes in 0 blocks
==3221==still reachable: 0 bytes in 0 blocks
==3221==        suppressed: 0 bytes in 0 blocks
==3221==
==3221== For counts of detected and suppressed errors, rerun with: -v
==3221== ERROR SUMMARY: 3 errors from 3 contexts
(suppressed: 6 from 6)

从检查结果看,可以发现内存泄露。

2.5内存多次释放

#include <stdio.h>
#include <stdlib.h>
int main(void) 
{ 
    char *p;
    p=(char *)malloc(100);   
    if(p)
        printf("Memory Allocated at: %s/n",p); 
    else
        printf("Not Enough Memory!/n"); 
    free(p);                          //重复释放
    free(p);
    free(p);
    return 0;
}

1)编译程序t5.c

gcc -Wall t5.c -g -o t5

2)使用Valgrind检查程序BUG

valgrind --tool=memcheck --leak-check=full ./t5

3) 运行结果如下:

从上面的输出可以看到(标注), 该功能检测到我们对同一个指针调用了3次释放内存操作。

2.6内存动态管理

常见的内存分配方式分三种:静态存储,栈上分配,堆上分配。全局变量属于静态存储,它们是在编译时就被分配了存储空间,函数内的局部变量属于栈上分配,而最灵活的内存使用方式当属堆上分配,也叫做内存动态分配了。常用的内存动态分配函数包括:malloc, alloc, realloc, new等,动态释放函数包括free, delete。

一旦成功申请了动态内存,我们就需要自己对其进行内存管理,而这又是最容易犯错误的。下面的一段程序,就包括了内存动态管理中常见的错误。

#include <stdio.h>
#include <stdlib.h>
int main(int argc,char *argv[])
{
int i;
char* p = (char*)malloc(10);
char* pt=p;
for(i = 0;i < 10;i++)
    {
p[i] = 'z';
    }
free(p);
pt[1] = 'x';
free(pt);
return 0;
}

1)编译程序t6.c

gcc -Wall t6.c -g -o t6

2)使用Valgrind检查程序BUG

valgrind --tool=memcheck --leak-check=full ./t6

3) 运行结果如下:

==3380== Memcheck, a memory error detector
==3380== Copyright (C) 2002-2012, and GNU GPL'd, by Julian Seward et al.
==3380== Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info
==3380== Command: ./t6
==3380==
==3380==  Invalid write of size 1
==3380==at 0x40055C: main (t6.c:14)
==3380==Address 0x4c27041 is 1 bytes inside a block of size 10 free'd
==3380==at 0x4A06430: free (vg_replace_malloc.c:446)
==3380==by 0x400553: main (t6.c:13)
==3380==
==3380==  Invalid free() / delete / delete[] / realloc()
==3380==at 0x4A06430: free (vg_replace_malloc.c:446)
==3380==by 0x40056A: main (t6.c:15)
==3380==Address 0x4c27040 is 0 bytes inside a block of size 10 free'd
==3380==at 0x4A06430: free (vg_replace_malloc.c:446)
==3380==by 0x400553: main (t6.c:13)
==3380==
==3380==
==3380== HEAP SUMMARY:
==3380==in use at exit: 0 bytes in 0 blocks
==3380==total heap usage: 1 allocs, 2 frees, 10 bytes allocated

申请内存在使用完成后就要释放。如果没有释放,或少释放了就是内存泄露;多释放也会产生问题。上述程序中,指针p和pt指向的是同一块内存,却被先后释放两次。系统会在堆上维护一个动态内存链表,如果被释放,就意味着该块内存可以继续被分配给其他部分,如果内存被释放后再访问,就可能覆盖其他部分的信息,这是一种严重的错误,上述程序第14行中就在释放后仍然写这块内存。

输出结果显示,第13行分配和释放函数不一致;第14行发生非法写操作,也就是往释放后的内存地址写值;第15行释放内存函数无效。

秋招可以写进简历的6个实战项目:

相关文章
|
18天前
|
Web App开发 JavaScript 前端开发
使用 Chrome 浏览器的内存分析工具来检测 JavaScript 中的内存泄漏
【10月更文挑战第25天】利用 Chrome 浏览器的内存分析工具,可以较为准确地检测 JavaScript 中的内存泄漏问题,并帮助我们找出潜在的泄漏点,以便采取相应的解决措施。
127 9
|
1月前
|
存储 监控 算法
JVM调优深度剖析:内存模型、垃圾收集、工具与实战
【10月更文挑战第9天】在Java开发领域,Java虚拟机(JVM)的性能调优是构建高性能、高并发系统不可或缺的一部分。作为一名资深架构师,深入理解JVM的内存模型、垃圾收集机制、调优工具及其实现原理,对于提升系统的整体性能和稳定性至关重要。本文将深入探讨这些内容,并提供针对单机几十万并发系统的JVM调优策略和Java代码示例。
49 2
|
5月前
|
存储 Linux Android开发
Volatility3内存取证工具安装及入门在Linux下的安装教程
Volatility 是一个完全开源的工具,用于从内存 (RAM) 样本中提取数字工件。支持Windows,Linux,MaC,Android等多类型操作系统系统的内存取证。针对竞赛这块(CTF、技能大赛等)基本上都是用在Misc方向的取证题上面,很多没有听说过或者不会用这款工具的同学在打比赛的时候就很难受。以前很多赛项都是使用vol2.6都可以完成,但是由于操作系统更新,部分系统2.6已经不支持了,如:Win10 等镜像,而Volatility3是支持这些新版本操作系统的。
|
3月前
|
NoSQL Java 测试技术
Golang内存分析工具gctrace和pprof实战
文章详细介绍了Golang的两个内存分析工具gctrace和pprof的使用方法,通过实例分析展示了如何通过gctrace跟踪GC的不同阶段耗时与内存量对比,以及如何使用pprof进行内存分析和调优。
83 0
Golang内存分析工具gctrace和pprof实战
|
3月前
|
监控 Java
JAVA性能优化- IntelliJ插件:java内存分析工具(JProfiler)
JAVA性能优化- IntelliJ插件:java内存分析工具(JProfiler)
143 0
|
4月前
|
监控 Java 开发者
Java面试题:如何使用JVM工具(如jconsole, jstack, jmap)来分析内存使用情况?
Java面试题:如何使用JVM工具(如jconsole, jstack, jmap)来分析内存使用情况?
202 2
|
5月前
|
C++
内存泄漏检查工具下载(vld)
内存泄漏检查工具下载(vld)
|
4月前
|
监控 算法 Java
怎么用JDK自带工具进行JVM内存分析
JVM内存分析工具,如`jps`、`jcmd`、`jstat`、`jstack`和`jmap`,是诊断和优化Java应用的关键工具。`jps`列出Java进程,`jcmd`执行诊断任务,如查看JVM参数和线程堆栈,`jstat`监控内存和GC,`jstack`生成线程堆栈信息,而`jmap`则用于生成堆转储文件。这些工具帮助排查内存泄漏、优化内存配置、性能调优和异常分析。例如,`jmap -dump:file=heapdump.hprof &lt;PID&gt;`生成堆转储文件,之后可以用Eclipse Memory Analyzer (MAT)等工具分析。
|
4月前
|
安全 Java 调度
Java面试题:Java内存优化、多线程安全与并发框架实战,如何在Java应用中实现内存优化?在多线程环境下,如何保证数据的线程安全?使用Java并发工具包中的哪些工具可以帮助解决并发问题?
Java面试题:Java内存优化、多线程安全与并发框架实战,如何在Java应用中实现内存优化?在多线程环境下,如何保证数据的线程安全?使用Java并发工具包中的哪些工具可以帮助解决并发问题?
62 0
|
6月前
|
JSON 数据管理 测试技术
自动化测试工具Selenium Grid的深度应用分析深入理解操作系统的内存管理
【5月更文挑战第28天】随着互联网技术的飞速发展,软件测试工作日益复杂化,传统的手工测试已无法满足快速迭代的需求。自动化测试工具Selenium Grid因其分布式执行特性而受到广泛关注。本文旨在深入剖析Selenium Grid的工作原理、配置方法及其在复杂测试场景中的应用优势,为测试工程师提供高效测试解决方案的参考。