【计算机架构】响应时间和吞吐量 | 相对性能 | 计算 CPU 时间 | 指令技术与 CPI | T=CC/CR, CC=IC*CPI

简介: 【计算机架构】响应时间和吞吐量 | 相对性能 | 计算 CPU 时间 | 指令技术与 CPI | T=CC/CR, CC=IC*CPI

   



0x00 响应时间和吞吐量(Response Time and Throughput)

响应时间 (Response time):完成任务所需的时间

吞吐量 (Throughput):每个单位时间内完成的总工作量 (比如: tasks/transactions... per hours)

存在多种因素可以对响应时间和吞吐量造成影响,包括但不限于:

  • 处理能力:通过升级到更快的处理器或添加更多处理器,可以减少响应时间并增加吞吐量。这是因为更快或更强大的处理器可以在更短的时间内处理更多的任务。
  • 系统负载:如果系统过载,处理过多的任务或用户,将会对响应时间和吞吐量产生负面影响。这是因为系统可能无法处理工作负荷,导致响应时间更长,吞吐量降低。
  • 网络延迟:如果网络延迟较高,响应时间和吞吐量可能会受到影响。这是因为数据传输需要更长的时间,从而导致响应时间变长和吞吐量降低。

换更快的处理器?添加更多的处理器?本章我们更关注的是 响应时间 (Response time) 。

0x01 相对性能(Relative Performance)

📚 定义:性能 =  1 / 执行时间

倍:

💭 举个例子:运行程序所需时间,在 机器上为 10s,在 机器上为 15s

因此, 快 1.5 倍。

0x02 执行时间测量(Measuring Execution Time)

执行时间测量 (Measuring Execution Time) 指的是在计算机程序中测量代码执行所需的时间。这通常是通过在代码开始和结束时记录时间戳来实现的,然后计算时间戳之间的差异来计算程序执行所需的时间。

执行时间测量通常是性能优化和调试代码的重要工具。通过测量程序中不同部分的执行时间,开发人员可以确定哪些部分需要进行优化,以使程序更加高效。

在实际应用中,执行时间测量可以使用多种不同的技术和工具来实现,例如内置的计时器函数、性能分析工具、代码覆盖率工具等等。不同的方法适用于不同的场景和需求。

总的反应时间 (Elapsed time):

  • 总响应时间,包括所有方面 (Processing, I/O, OS overhead, idle time)
  • 确定系统性能

CPU 时间 (CPU time):

  • 用于处理给定作业的时间 (Discounts I/O time, other jobs’ shares)
  • 包括用户 CPU 时间和系统 CPU 时间
  • 不同的程序受 CPU 和系统性能的影响不同

0x03 CPU 时钟(Clocking)

CPU Clocking(CPU 时钟)指的是计算机 CPU 内部的时钟系统。这个时钟系统会以固定的速率来发出脉冲信号,这些信号会让 CPU 的不同部件在每个时钟周期内执行相应的操作。

数字硬件的操作受到固定速率时钟的控制:

时钟周期 (Clock period):时钟信号一个完整的循环所需要的时间。

时钟频率 (Clock Rate):每秒钟时钟信号产生的周期数。

0x04 计算CPU时间(T=CC/CR)

性能可以通过减少时钟周期数、增加时钟速度来改善。

硬件设计人员通常需要在时钟速度和时钟周期数量之间进行权衡。

🔺 CPU Time 计算公式如下:

CPU 时间 =CPU 时钟周期数 × 时钟周期

                =CPU 时钟周期数 ÷ 时钟频率

📜 简化记忆:

  • 求 CPU 时间:
  • 求时钟频率 (Clock Rate) :
  • 求时钟周期 (Clock Cycle) :

💭 举个例子:

计算机 A 有 2GHz 的时钟, 10s 的CPU 时间,请设计计算机 B,目标达到 10s 的 CPU 时间。可以使用更快的时钟,但会导致 1.2 × 时钟周期,问计算机 B 的时钟应该多快?

💡 解答:已知 计算

* 根据上述公式 那么

根据题意,使用更快时钟导致 ,并且目标 CPU 时间 ,可列出公式:

此时我们需要计算 A 的时钟周期,根据公式 ,那么时钟周期

此时我们已经得到了 ,带入即可计算出

0x05 指令计数 IC 和 每条指令所需的时钟周期数 CPI

(Instruction Count),指的是 指令计数

(Cycle Per Instrution),指的是 每条指令所需的时钟周期数。即 平均执行周期数

是指在一个程序中,每个时钟周期所执行的平均指令数。这两个概念都是计算机性能评估中的关键指标。通过减少指令计数或降低 CPI,可以提高计算机系统的性能。

📃 简化记忆:

Execution time = (Instruction count * CPI) / Clock rate

程序的指令计数是由程序本身、指令集架构 (ISA) 和编译器所决定的。每个指令的平均时钟周期数取决于CPU硬件。如果不同的指令具有不同的CPI,则平均 CPI 受指令组合的影响。

💭 CPI 计算例子:

计算机 A 的周期时间 = 250ps,CPI = 2.0,计算机 B 的周期时间 为 500ps,CPI = 1.2

ISA 相同,哪台计算机更快?快多少?

💡 题解:根据题意得知:

既然要比谁更快,那么我们分别计算出 A, B 的 CPU Time:

,因此 A 速度更快。

下面计算快多少:

0x06 关于CPI 的更多细节

如果不同的指令类别需要不同的时钟周期数:

加权平均 CPI (Avg):

💭 例子:Alternative compiled code sequences using instructions in classes A, B, C:

💡 解读:Sequence 1 中  

根据公式:

再根据图表给出的 IC, CPI 即可计算出 Clock Cycles:

然后通过公式计算平均:

0x07 性能摘要(Performance Summary)

性能摘要 (Performance Summary) 是指对计算机系统、软件或应用程序性能进行评估、分析和总结的过程。在性能摘要中,可以考虑多种性能指标,如执行时间、吞吐量、响应时间、负载等。通常,性能摘要的目的是发现瓶颈、评估系统的优化潜力、指导系统设计和优化、以及进行比较评估等。在实践中,性能摘要是计算机系统开发和维护中非常重要的一环,可以帮助提高系统的性能、可靠性和稳定性。

性能取决于 算法 (影响 IC,可能影响 CPI)、编程语言 (影响 IC,CPI)、编译器(影响 IC,CPI)、指令集架构(影响 IC,CPI,Tc)。

🔺 计算公式总结:

📌 [ 笔者 ]   王亦优
📃 [ 更新 ]   2022.3.
❌ [ 勘误 ]   /* 暂无 */
📜 [ 声明 ]   由于作者水平有限,本文有错误和不准确之处在所难免,
              本人也很想知道这些错误,恳望读者批评指正!

📜 参考资料 

C++reference[EB/OL]. []. http://www.cplusplus.com/reference/.

Microsoft. MSDN(Microsoft Developer Network)[EB/OL]. []. .

百度百科[EB/OL]. []. https://baike.baidu.com/.

相关文章
|
10天前
|
运维 Kubernetes Cloud Native
云原生技术:容器化与微服务架构的完美结合
【10月更文挑战第37天】在数字化转型的浪潮中,云原生技术以其灵活性和高效性成为企业的新宠。本文将深入探讨云原生的核心概念,包括容器化技术和微服务架构,以及它们如何共同推动现代应用的发展。我们将通过实际代码示例,展示如何在Kubernetes集群上部署一个简单的微服务,揭示云原生技术的强大能力和未来潜力。
|
18天前
|
运维 持续交付 API
从零构建微服务架构:一次深度技术探索之旅####
【10月更文挑战第28天】 本文记录了作者在从零开始构建微服务架构过程中的深刻技术感悟,通过实战案例详细剖析了微服务设计、开发、部署及运维中的关键要点与挑战。文章首先概述了微服务架构的核心理念及其对企业IT架构转型的重要性,随后深入探讨了服务拆分策略、API网关选型、服务间通信协议选择、容器化部署(Docker+Kubernetes)、以及持续集成/持续部署(CI/CD)流程的设计与优化。最后,分享了在高并发场景下的性能调优经验与故障排查心得,旨在为读者提供一套可借鉴的微服务架构实施路径。 ####
55 3
|
29天前
|
边缘计算 Cloud Native 安全
构建灵活高效的下一代应用架构 随着企业数字化转型的加速,云原生技术正逐渐成为构建现代化应用程序的关键支柱。
随着企业数字化转型加速,云原生技术逐渐成为构建现代化应用的关键。本文探讨了云原生的核心概念(如容器化、微服务、DevOps)、主要应用场景(如金融、电商、IoT)及未来发展趋势(如无服务器计算、边缘计算、多云架构),并分析了面临的挑战,如架构复杂性和安全问题。云原生技术为企业提供了更灵活、高效的应用架构,助力数字化转型。
63 4
|
8天前
|
存储 分布式计算 关系型数据库
架构/技术框架调研
本文介绍了微服务间事务处理、调用、大数据处理、分库分表、大文本存储及数据缓存的最优解决方案。重点讨论了Seata、Dubbo、Hadoop生态系统、MyCat、ShardingSphere、对象存储服务和Redis等技术,提供了详细的原理、应用场景和优缺点分析。
|
10天前
|
监控 API 微服务
后端技术演进:从单体架构到微服务的转变
随着互联网应用的快速增长和用户需求的不断演化,传统单体架构已难以满足现代软件开发的需求。本文深入探讨了后端技术在面对复杂系统挑战时的演进路径,重点分析了从单体架构向微服务架构转变的过程、原因及优势。通过对比分析,揭示了微服务架构如何提高系统的可扩展性、灵活性和维护效率,同时指出了实施微服务时面临的挑战和最佳实践。
30 7
|
8天前
|
传感器 算法 物联网
智能停车解决方案之停车场室内导航系统(二):核心技术与系统架构构建
随着城市化进程的加速,停车难问题日益凸显。本文深入剖析智能停车系统的关键技术,包括停车场电子地图编辑绘制、物联网与传感器技术、大数据与云计算的应用、定位技术及车辆导航路径规划,为读者提供全面的技术解决方案。系统架构分为应用层、业务层、数据层和运行环境,涵盖停车场室内导航、车位占用检测、动态更新、精准导航和路径规划等方面。
44 4
|
27天前
|
Kubernetes Cloud Native 持续交付
云端新纪元:云原生技术重塑IT架构####
【10月更文挑战第20天】 本文深入探讨了云原生技术的兴起背景、核心理念、关键技术组件以及它如何引领现代IT架构迈向更高效、灵活与可扩展的新阶段。通过剖析Kubernetes、微服务、Docker等核心技术,本文揭示了云原生架构如何优化资源利用、加速应用开发与部署流程,并促进企业数字化转型的深度实践。 ####
|
9天前
|
Kubernetes Cloud Native 持续交付
云原生技术在现代应用架构中的实践与思考
【10月更文挑战第38天】随着云计算的不断成熟和演进,云原生(Cloud-Native)已成为推动企业数字化转型的重要力量。本文从云原生的基本概念出发,深入探讨了其在现代应用架构中的实际应用,并结合代码示例,展示了云原生技术如何优化资源管理、提升系统弹性和加速开发流程。通过分析云原生的优势与面临的挑战,本文旨在为读者提供一份云原生转型的指南和启示。
25 3
|
11天前
|
网络协议 数据挖掘 5G
适用于金融和交易应用的低延迟网络:技术、架构与应用
适用于金融和交易应用的低延迟网络:技术、架构与应用
39 5
|
9天前
|
运维 Kubernetes Cloud Native
云原生技术在现代应用架构中的实践与挑战####
本文深入探讨了云原生技术的核心概念、关键技术组件及其在实际项目中的应用案例,分析了企业在向云原生转型过程中面临的主要挑战及应对策略。不同于传统摘要的概述性质,本摘要强调通过具体实例揭示云原生技术如何促进应用的灵活性、可扩展性和高效运维,同时指出实践中需注意的技术债务、安全合规等问题,为读者提供一幅云原生技术实践的全景视图。 ####

热门文章

最新文章

下一篇
无影云桌面