2023秋招算法提前批:小红书CV图像渲染算法岗面经

简介: 2023秋招算法提前批:小红书CV图像渲染算法岗面经

专栏分享:计算机小伙伴秋招春招找工作的面试经验和面试的详情知识点


专栏首页:软件测试开发类面经合集


主要分享:测试开发类岗位在面试互联网公司时候一些真实的经验

面试code学习参考请看:数据结构面试必刷100题


6.2投递 6.12一面 6.15二面 6.20oc+offer

一路下来挺顺的,流程推进的不慢,问的问题也难度适中,没有偏难怪,面试体验极好,这个必须得夸一下,面试官很友好,hr温柔客气,主管也很友好。C++八股什么的这里就不说了 到处都有 主要说说我没答上来的图形学

一面:

1.msaa原理(当时跟ssaa混了,我确实没搞明白),面

相关文章
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
|
1月前
|
机器学习/深度学习 人工智能 算法
【MM2024】面向 StableDiffusion 的多目标图像编辑算法 VICTORIA
阿里云人工智能平台 PAI 团队与华南理工大学合作在国际多媒体顶级会议 ACM MM2024 上发表 VICTORIA 算法,这是一种面向 StableDiffusion 的多目标图像编辑算法。VICTORIA 通过文本依存关系来修正图像编辑过程中的交叉注意力图,从而确保关系对象的一致性,支持用户通过修改描述性提示一次性编辑多个目标。
|
1月前
|
算法 数据安全/隐私保护
织物图像的配准和拼接算法的MATLAB仿真,对比SIFT,SURF以及KAZE
本项目展示了织物瑕疵检测中的图像拼接技术,使用SIFT、SURF和KAZE三种算法。通过MATLAB2022a实现图像匹配、配准和拼接,最终检测并分类织物瑕疵。SIFT算法在不同尺度和旋转下保持不变性;SURF算法提高速度并保持鲁棒性;KAZE算法使用非线性扩散滤波器构建尺度空间,提供更先进的特征描述。展示视频无水印,代码含注释及操作步骤。
|
2月前
|
算法 数据可视化 数据安全/隐私保护
基于LK光流提取算法的图像序列晃动程度计算matlab仿真
该算法基于Lucas-Kanade光流方法,用于计算图像序列的晃动程度。通过计算相邻帧间的光流场并定义晃动程度指标(如RMS),可量化图像晃动。此版本适用于Matlab 2022a,提供详细中文注释与操作视频。完整代码无水印。
|
4月前
|
机器学习/深度学习 编解码 监控
算法金 | 深度学习图像增强方法总结
**图像增强技术概括** 图像增强聚焦于提升视觉效果和细节,广泛应用于医学、遥感等领域。空间域增强包括直方图均衡化(增强对比度)、对比度拉伸、灰度变换、平滑滤波(均值、中值)和锐化滤波(拉普拉斯、高通)。频率域增强利用傅里叶变换、小波变换,通过高频和低频滤波增强图像特征。现代方法涉及超分辨率重建、深度学习去噪(如CNN、Autoencoder)、图像修复(如GAN)和GANs驱动的多种图像处理任务。
147 14
算法金 | 深度学习图像增强方法总结
|
3月前
|
算法 前端开发 计算机视觉
基于均值坐标(Mean-Value Coordinates)的图像融合算法的优化实现
基于均值坐标(Mean-Value Coordinates)的图像融合算法的优化实现
43 0
|
3月前
|
自然语言处理 并行计算 算法
基于均值坐标(Mean-Value Coordinates)的图像融合算法的具体实现
基于均值坐标(Mean-Value Coordinates)的图像融合算法的具体实现
45 0
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
|
4月前
|
算法
基于粒子群优化的图像融合算法matlab仿真
这是一个基于粒子群优化(PSO)的图像融合算法,旨在将彩色模糊图像与清晰灰度图像融合成彩色清晰图像。在MATLAB2022a中测试,算法通过PSO求解最优融合权值参数,经过多次迭代更新粒子速度和位置,以优化融合效果。核心代码展示了PSO的迭代过程及融合策略。最终,使用加权平均法融合图像,其中权重由PSO计算得出。该算法体现了PSO在图像融合领域的高效性和融合质量。
|
5月前
|
算法 计算机视觉
基于Chan-Vese算法的图像边缘提取matlab仿真
**算法预览展示了4幅图像,从边缘检测到最终分割,体现了在matlab2022a中应用的Chan-Vese水平集迭代过程。核心代码段用于更新水平集并显示迭代效果,最后生成分割结果及误差曲线。Chan-Vese模型(2001)是图像分割的经典方法,通过最小化能量函数自动检测平滑区域和清晰边界的图像分割,适用于复杂环境,广泛应用于医学影像和机器视觉。**
下一篇
无影云桌面