1.算法仿真效果
matlab2022a仿真结果如下:
2.算法涉及理论知识概要
5G模型的基本结构如下所示:
超密集网络是5G通信系统中的重要技术,是现在通信界的研究热点。系统中的每个小小区都是正交频分多址系统,共有TV个小小区,每个小小区使用个OFDMA子载波,信道增益为G。根据其结构图可知,当然超密集网络由大量小小区部署,小小区是低功率无线接入节点,工作在授权的频谱,而宏基站的覆盖范围可达数公里。
超密集网络(UDN,Ultra-Dense Network)是5G网络的一个重要特征,它通过在热点区域增加大量的低功率节点来提高网络容量和覆盖率。然而,UDN的部署也带来了许多挑战,其中之一就是多连接负载均衡和资源分配问题。为了解决这个问题,我们可以设计一种基于5G通信的超密集网络多连接负载均衡和资源分配算法。
在UDN中,由于节点密度极高,因此很可能会出现多个节点同时请求相同资源的情况,导致资源竞争加剧。此外,由于节点数量众多,网络中的负载分布可能非常不均衡。因此,我们需要在保证网络整体性能的前提下,实现多连接负载均衡和资源分配。
我们的算法基于以下原理:首先,我们通过测量每个节点的负载情况,以及每个节点与目标之间的距离和信道质量等信息,来评估每个节点的可用性和可靠性;然后,我们根据这些信息,为每个连接分配适当的资源,以确保负载均衡和网络性能最优。
在算法中,如果多个基站对某个用户进行资源分配,其遵循的原则如下所示:
以2个基站和1个用户为例子,当2个基站同时对一个用户资源配置,基站采用平均方式给用户自己分配,即多个基站分配出相同的资源给用户进行使用。首先定义系统的总吞吐量为优化目标(注意,在条件相同的情况下,总的吞吐量大,那么意味着用户接入速率,用户平均速率,SINR,等性能指标也较好,因此以该指标为优化目标)
3.MATLAB核心程序
```Nbs = 4;
%用户个数Nbs个小小区,每个小小区使用K个OFDMA子载波
Nuser = 64;%设置64,128,256等幂次方,或者较大的数据,否则报错或者结果不符合实际情况
%仿真信噪比
SNRs =[2:2:20];
%以下是5G系统,使用的OFDM+OQAM调制方式发送和接收数据的相关参数
%信号发送功率
Pow = 1;
%噪声功率
Pnoise = Pow./10.^(SNRs./10);
%总的功率
Pt = PowNuser.(1+rand(1,Nbs)); %模拟不同基站之间的差异
%数据发送速率
Rb = 10e6;
%采样率
Nsamp = 8;
%每个OFDM符号对应的bit数
Rt = 256;
%信号带宽
Bw = 5e6;
%每个子载波带宽
Bw_sub = Bw/Nuser;
%OFDM保护带长度
Lgi = 8;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%5G信道相关参数
%多径时延
Mdelay = 2;
%最大多径时延
Mdelay2 = 16;
%多径个数
Nmulti = 4;
for ii=1:length(SNRs)
%信道估计
%负载均衡初始状态计算
for ij = 1:Nbs
.................................................................................
%产生5G密集网络的多径信道
for ij = 1:Nbs
%不同基站,其和用户之间的信号会有差异
[path_delay,path_amp] = func_Multipath(Mdelay,Mdelay2,Nmulti,ij);
%信道估计
[Hest,Channel_p] = func_Channel_est(path_delay,path_amp,Nuser);
gain_subc = abs(Hest);
Err = 0;
for jj=1:Nums
rng(jj)
jj
ii
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%以下为一个完整的5G信号由基站发送给用户的通信流程
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%产生随机数据信息
Tsignal = round(rand(1,Rt));
%首先进行资源分配
[Sub_bit0,Sub_pw0]= func_chow(Nuser,gain_subc,Rt,Pnoise(ii),Pt(ij));
%将负载高的基站业务,部分转移到负载低的基站上
[Sub_bit1,Sub_pw1] = func_maxsinr_loadbalance(Sub_bit0,Sub_pw0,Max_Rate(ij));
%优化处理
[Sub_bit,Sub_pw] = func_GA_Resource_allocation1(Sub_bit1,Rt,gain_subc,Pnoise(ii),Nuser,Pt(ij),Hest,Bw,Max_Rate(ij),Nbs);
%串并处理
Tsignal_S2P = func_S2P(Tsignal,Sub_bit,Nsamp);
%基于OFDM+OQAM的5G密集网络调制处理过程
Tsignal_QAM = func_OQAM_mod(Tsignal_S2P,Sub_pw,Sub_bit);
Tsignal_IFFT = sqrt(Nuser).*ifft(Tsignal_QAM);
Tsignal_GI = func_GI_insert(Tsignal_IFFT,Lgi);
%通过信道
Tsignal_multi = func_add_multipath(Tsignal_GI,Channel_p);
Tsignal_AWGN = awgn(Tsignal_multi,SNRs(ii),'measured');
%开始接收信号
%OFDM+OQAM解调
Rsignal_noGI = Tsignal_AWGN(Lgi+1:length(Tsignal_AWGN));
Rsignal_FFT = 1/sqrt(Nuser).*fft(Rsignal_noGI);
Rsignal_est = func_Rest(Rsignal_FFT,Hest);
Rsignal_QAM = func_OQAM_demod(Rsignal_est,Sub_bit,Sub_pw,Nsamp);
%并串处理
Rsignal_P2S = func_P2S(Rsignal_QAM,Sub_bit,Rt);
end
Error1(ii,ij)=Err/Nums;
end
end
figure;
semilogy(SNRs,mean(Error1,2),'b-s');
grid on;
xlabel('SNR');
ylabel('ber');
save new_error.mat SNRs Error1
```