m基于5G通信的超密集网络多连接负载均衡和资源分配算法matlab仿真

本文涉及的产品
传统型负载均衡 CLB,每月750个小时 15LCU
网络型负载均衡 NLB,每月750个小时 15LCU
EMR Serverless StarRocks,5000CU*H 48000GB*H
简介: m基于5G通信的超密集网络多连接负载均衡和资源分配算法matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:

1b4aaeae6a7d5980ce9b83f6837f8c63_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
e98f25a1afd0f46e893a96e39087a443_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
1bd03adbbaac5bd0d15d0832179e61cd_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

2.算法涉及理论知识概要
5G模型的基本结构如下所示:

c84755d99c0265f886a7742fd39cd601_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   超密集网络是5G通信系统中的重要技术,是现在通信界的研究热点。系统中的每个小小区都是正交频分多址系统,共有TV个小小区,每个小小区使用个OFDMA子载波,信道增益为G。根据其结构图可知,当然超密集网络由大量小小区部署,小小区是低功率无线接入节点,工作在授权的频谱,而宏基站的覆盖范围可达数公里。

    超密集网络(UDN,Ultra-Dense Network)是5G网络的一个重要特征,它通过在热点区域增加大量的低功率节点来提高网络容量和覆盖率。然而,UDN的部署也带来了许多挑战,其中之一就是多连接负载均衡和资源分配问题。为了解决这个问题,我们可以设计一种基于5G通信的超密集网络多连接负载均衡和资源分配算法。

    在UDN中,由于节点密度极高,因此很可能会出现多个节点同时请求相同资源的情况,导致资源竞争加剧。此外,由于节点数量众多,网络中的负载分布可能非常不均衡。因此,我们需要在保证网络整体性能的前提下,实现多连接负载均衡和资源分配。

   我们的算法基于以下原理:首先,我们通过测量每个节点的负载情况,以及每个节点与目标之间的距离和信道质量等信息,来评估每个节点的可用性和可靠性;然后,我们根据这些信息,为每个连接分配适当的资源,以确保负载均衡和网络性能最优。

   在算法中,如果多个基站对某个用户进行资源分配,其遵循的原则如下所示:

    以2个基站和1个用户为例子,当2个基站同时对一个用户资源配置,基站采用平均方式给用户自己分配,即多个基站分配出相同的资源给用户进行使用。首先定义系统的总吞吐量为优化目标(注意,在条件相同的情况下,总的吞吐量大,那么意味着用户接入速率,用户平均速率,SINR,等性能指标也较好,因此以该指标为优化目标)

de5273426d876bdcbe5813ca2a021a23_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.MATLAB核心程序
```Nbs = 4;
%用户个数Nbs个小小区,每个小小区使用K个OFDMA子载波
Nuser = 64;%设置64,128,256等幂次方,或者较大的数据,否则报错或者结果不符合实际情况
%仿真信噪比
SNRs =[2:2:20];

%以下是5G系统,使用的OFDM+OQAM调制方式发送和接收数据的相关参数
%信号发送功率
Pow = 1;
%噪声功率
Pnoise = Pow./10.^(SNRs./10);
%总的功率
Pt = PowNuser.(1+rand(1,Nbs)); %模拟不同基站之间的差异
%数据发送速率
Rb = 10e6;
%采样率
Nsamp = 8;
%每个OFDM符号对应的bit数
Rt = 256;
%信号带宽
Bw = 5e6;
%每个子载波带宽
Bw_sub = Bw/Nuser;
%OFDM保护带长度
Lgi = 8;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%5G信道相关参数
%多径时延
Mdelay = 2;
%最大多径时延
Mdelay2 = 16;
%多径个数
Nmulti = 4;
for ii=1:length(SNRs)

%信道估计
%负载均衡初始状态计算
for ij = 1:Nbs

.................................................................................
%产生5G密集网络的多径信道
for ij = 1:Nbs
%不同基站,其和用户之间的信号会有差异
[path_delay,path_amp] = func_Multipath(Mdelay,Mdelay2,Nmulti,ij);
%信道估计
[Hest,Channel_p] = func_Channel_est(path_delay,path_amp,Nuser);
gain_subc = abs(Hest);
Err = 0;
for jj=1:Nums
rng(jj)
jj
ii
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%以下为一个完整的5G信号由基站发送给用户的通信流程
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%产生随机数据信息
Tsignal = round(rand(1,Rt));
%首先进行资源分配
[Sub_bit0,Sub_pw0]= func_chow(Nuser,gain_subc,Rt,Pnoise(ii),Pt(ij));
%将负载高的基站业务,部分转移到负载低的基站上
[Sub_bit1,Sub_pw1] = func_maxsinr_loadbalance(Sub_bit0,Sub_pw0,Max_Rate(ij));
%优化处理
[Sub_bit,Sub_pw] = func_GA_Resource_allocation1(Sub_bit1,Rt,gain_subc,Pnoise(ii),Nuser,Pt(ij),Hest,Bw,Max_Rate(ij),Nbs);

        %串并处理
        Tsignal_S2P      = func_S2P(Tsignal,Sub_bit,Nsamp);
        %基于OFDM+OQAM的5G密集网络调制处理过程
        Tsignal_QAM      = func_OQAM_mod(Tsignal_S2P,Sub_pw,Sub_bit);
        Tsignal_IFFT     = sqrt(Nuser).*ifft(Tsignal_QAM);
        Tsignal_GI       = func_GI_insert(Tsignal_IFFT,Lgi);
        %通过信道
        Tsignal_multi    = func_add_multipath(Tsignal_GI,Channel_p);
        Tsignal_AWGN     = awgn(Tsignal_multi,SNRs(ii),'measured');
        %开始接收信号
        %OFDM+OQAM解调
        Rsignal_noGI     = Tsignal_AWGN(Lgi+1:length(Tsignal_AWGN));
        Rsignal_FFT      = 1/sqrt(Nuser).*fft(Rsignal_noGI);
        Rsignal_est      = func_Rest(Rsignal_FFT,Hest);
        Rsignal_QAM      = func_OQAM_demod(Rsignal_est,Sub_bit,Sub_pw,Nsamp);
        %并串处理
        Rsignal_P2S      = func_P2S(Rsignal_QAM,Sub_bit,Rt);
    end
    Error1(ii,ij)=Err/Nums;
end

end

figure;
semilogy(SNRs,mean(Error1,2),'b-s');
grid on;
xlabel('SNR');
ylabel('ber');
save new_error.mat SNRs Error1
```

相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
5天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
15天前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
17天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种基于WOA优化的GroupCNN分组卷积网络时间序列预测算法。使用Matlab2022a开发,提供无水印运行效果预览及核心代码(含中文注释)。算法通过WOA优化网络结构与超参数,结合分组卷积技术,有效提升预测精度与效率。分组卷积减少了计算成本,而WOA则模拟鲸鱼捕食行为进行优化,适用于多种连续优化问题。
|
10天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化卷积神经网络(Bayes-CNN)的多因子数据分类识别算法matlab仿真
本项目展示了贝叶斯优化在CNN中的应用,包括优化过程、训练与识别效果对比,以及标准CNN的识别结果。使用Matlab2022a开发,提供完整代码及视频教程。贝叶斯优化通过构建代理模型指导超参数优化,显著提升模型性能,适用于复杂数据分类任务。
|
2天前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
【10月更文挑战第23天】在数字时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将探讨网络安全漏洞、加密技术和安全意识等方面的内容,以帮助读者更好地了解如何保护自己的网络安全。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,我们将为读者提供一些实用的建议和技巧,以增强他们的网络安全防护能力。
|
5天前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
【10月更文挑战第20天】在信息技术飞速发展的今天,网络安全和信息安全问题日益突出。本文将围绕网络安全漏洞、加密技术和安全意识等方面进行深入探讨,旨在提高读者对网络安全的认识和重视程度。文章首先介绍了网络安全漏洞的概念、分类和成因,然后详细阐述了加密技术的基本原理和应用,最后强调了提高个人和组织安全意识的重要性。通过本文的学习,读者将能够更好地理解网络安全的重要性,掌握一些实用的防护措施,并在日常生活中提高自己的安全意识。
47 10
|
2天前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
【10月更文挑战第23天】在数字化时代,网络安全和信息安全已经成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,帮助读者更好地了解网络安全和信息安全的基本知识。通过本文的学习,您将能够更好地保护自己的个人信息和数据安全。
|
2天前
|
监控 安全 网络协议
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
【10月更文挑战第24天】在数字化时代,网络安全和信息安全已经成为了我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的知识,并提供一些实用的技巧和建议,帮助读者提高自己的网络安全防护能力。
9 4
|
2天前
|
安全 网络安全 数据安全/隐私保护
网络安全与信息安全:从漏洞到加密,保护数据的关键步骤
【10月更文挑战第24天】在数字化时代,网络安全和信息安全是维护个人隐私和企业资产的前线防线。本文将探讨网络安全中的常见漏洞、加密技术的重要性以及如何通过提高安全意识来防范潜在的网络威胁。我们将深入理解网络安全的基本概念,学习如何识别和应对安全威胁,并掌握保护信息不被非法访问的策略。无论你是IT专业人士还是日常互联网用户,这篇文章都将为你提供宝贵的知识和技能,帮助你在网络世界中更安全地航行。
|
2天前
|
安全 网络协议 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
【10月更文挑战第24天】在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术以及提高安全意识的重要性。我们将探讨如何通过技术和教育手段来保护个人信息和数据安全,以确保我们在网络世界中的安全。
9 2