【Python】数据分析:pandas

简介: 【Python】数据分析:pandas

1. pandas简介

1-1 为什么要学习?

numpy已经能够帮助我们处理数据,能够结合matpolotlib解决我们数据分析的问题,那么pandas学习的目的在什么地方呢?

numpy能够帮我们处理处理数值型数据,但是这还不够很多时候,数据除了数值之外,还有字符串,还有时间序列等

比如:我们通过爬虫获取到了存储在数据库中的数据比如:之前voutube的例子中除了数值之外还有国家的信息,视频的分类(tag)信息,标题信息等

所以,numpy能够帮助我们处理数值,但是pandas除了处理数值之外(基于numpy),还能够帮助我们处理其他类型的数据,如字典等

1-2 什么是pandas?

pandas is an open source, BSD-licensed library providing high-performance, easy-to-use datastructures and data analysis tools for the Python programming language.

2- pandas的常用数据类型

  1. Series 一维,带标签数组
  2. DataFrame 二维,Series容器
    {   "src": "",   "status": "error",   "percent": 0,   "align": "left",   "linkTarget": "_blank",   "display": "inline",   "message": "图片不支持拷贝复制,请单独复制上传",   "size": 0 }SE}78X03J$~I~IJ4]CY3M81.png
    image.png

    2-1 创建pandas以为数组并指定标签

import string
import pandas as pd
import numpy as np
# 自动创建索引
t1 = pd.Series([1,3,6,14,65])
print(t1)
print(type(t1))
# 通过index指定索引
t2 = pd.Series(np.arange(10),index=list(string.ascii_uppercase[0:10]))
print(t2)
# 通过字符串创建索引
t3 = pd.Series([1,3,5,2,67],index=list("abcde"))
print(t3)
# 创建对象索引
dict={
    "dream":"be a excellent person",
    "goal":"to be a knowledgable teacher in university",
    "age":21
}
t4 = pd.Series(dict)
print(t4)

84E)@A@FM1$BF1]QZL}CGK5.png

result.png

重新给其指定其他的索引之后,如果能够对应上,就取其值,如果不能,就为Nan,这个的意思就是说:个人有10种水果,你要了苹果,香蕉,菠萝,他有苹果,香蕉,但是没有菠萝,这个时候菠萝就是nan

import string
import pandas as pd
a = {string.ascii_uppercase[i]:i for i in range(10)}
print(a)
b = pd.Series(a,index=list(string.ascii_uppercase[5:15]))
print(b)

VBO~H7Y6)_[U@V[(F82XBX9.png

result.png

3. pandas的索引和切片

MS4`{B6V3G0(K]6EX3N$08Q.png

image.png

for i in b.index:
    # 获取索引的值
    print(i)
# 获取长度
print(len(b.index))

L2D8L7C86$I8M8SI@G3~9K9.png

目录
相关文章
|
23天前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
53 0
|
8天前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第42天】本文将介绍如何使用Python进行数据分析和可视化。我们将从数据导入、清洗、探索性分析、建模预测,以及结果的可视化展示等方面展开讲解。通过这篇文章,你将了解到Python在数据处理和分析中的强大功能,以及如何利用这些工具来提升你的工作效率。
|
9天前
|
数据采集 数据可视化 数据处理
Python数据科学:Pandas库入门与实践
Python数据科学:Pandas库入门与实践
|
10天前
|
机器学习/深度学习 数据采集 数据可视化
Python数据科学实战:从Pandas到机器学习
Python数据科学实战:从Pandas到机器学习
|
17天前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
35 2
|
7天前
|
数据采集 数据可视化 数据挖掘
掌握Python数据分析,解锁数据驱动的决策能力
掌握Python数据分析,解锁数据驱动的决策能力
|
9天前
|
数据采集 数据可视化 数据挖掘
Python数据分析:Pandas库实战指南
Python数据分析:Pandas库实战指南
|
15天前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
15天前
|
数据采集 数据可视化 数据挖掘
利用Python进行数据分析:Pandas库实战指南
利用Python进行数据分析:Pandas库实战指南
|
16天前
|
SQL 数据挖掘 Python
数据分析编程:SQL,Python or SPL?
数据分析编程用什么,SQL、python or SPL?话不多说,直接上代码,对比明显,明眼人一看就明了:本案例涵盖五个数据分析任务:1) 计算用户会话次数;2) 球员连续得分分析;3) 连续三天活跃用户数统计;4) 新用户次日留存率计算;5) 股价涨跌幅分析。每个任务基于相应数据表进行处理和计算。
下一篇
无影云桌面