【Python】数据分析:pandas

简介: 【Python】数据分析:pandas

1. pandas简介

1-1 为什么要学习?

numpy已经能够帮助我们处理数据,能够结合matpolotlib解决我们数据分析的问题,那么pandas学习的目的在什么地方呢?

numpy能够帮我们处理处理数值型数据,但是这还不够很多时候,数据除了数值之外,还有字符串,还有时间序列等

比如:我们通过爬虫获取到了存储在数据库中的数据比如:之前voutube的例子中除了数值之外还有国家的信息,视频的分类(tag)信息,标题信息等

所以,numpy能够帮助我们处理数值,但是pandas除了处理数值之外(基于numpy),还能够帮助我们处理其他类型的数据,如字典等

1-2 什么是pandas?

pandas is an open source, BSD-licensed library providing high-performance, easy-to-use datastructures and data analysis tools for the Python programming language.

2- pandas的常用数据类型

  1. Series 一维,带标签数组
  2. DataFrame 二维,Series容器
    {   "src": "",   "status": "error",   "percent": 0,   "align": "left",   "linkTarget": "_blank",   "display": "inline",   "message": "图片不支持拷贝复制,请单独复制上传",   "size": 0 }SE}78X03J$~I~IJ4]CY3M81.png
    image.png

    2-1 创建pandas以为数组并指定标签

import string
import pandas as pd
import numpy as np
# 自动创建索引
t1 = pd.Series([1,3,6,14,65])
print(t1)
print(type(t1))
# 通过index指定索引
t2 = pd.Series(np.arange(10),index=list(string.ascii_uppercase[0:10]))
print(t2)
# 通过字符串创建索引
t3 = pd.Series([1,3,5,2,67],index=list("abcde"))
print(t3)
# 创建对象索引
dict={
    "dream":"be a excellent person",
    "goal":"to be a knowledgable teacher in university",
    "age":21
}
t4 = pd.Series(dict)
print(t4)

84E)@A@FM1$BF1]QZL}CGK5.png

result.png

重新给其指定其他的索引之后,如果能够对应上,就取其值,如果不能,就为Nan,这个的意思就是说:个人有10种水果,你要了苹果,香蕉,菠萝,他有苹果,香蕉,但是没有菠萝,这个时候菠萝就是nan

import string
import pandas as pd
a = {string.ascii_uppercase[i]:i for i in range(10)}
print(a)
b = pd.Series(a,index=list(string.ascii_uppercase[5:15]))
print(b)

VBO~H7Y6)_[U@V[(F82XBX9.png

result.png

3. pandas的索引和切片

MS4`{B6V3G0(K]6EX3N$08Q.png

image.png

for i in b.index:
    # 获取索引的值
    print(i)
# 获取长度
print(len(b.index))

L2D8L7C86$I8M8SI@G3~9K9.png

目录
相关文章
|
2月前
|
数据采集 数据可视化 数据挖掘
Pandas数据应用:天气数据分析
本文介绍如何使用 Pandas 进行天气数据分析。Pandas 是一个强大的 Python 数据处理库,适合处理表格型数据。文章涵盖加载天气数据、处理缺失值、转换数据类型、时间序列分析(如滚动平均和重采样)等内容,并解决常见报错如 SettingWithCopyWarning、KeyError 和 TypeError。通过这些方法,帮助用户更好地进行气候趋势预测和决策。
137 71
|
2月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
本文将引导读者了解如何使用Python进行数据分析,从安装必要的库到执行基础的数据操作和可视化。通过本文的学习,你将能够开始自己的数据分析之旅,并掌握如何利用Python来揭示数据背后的故事。
|
3月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
【10月更文挑战第42天】本文是一篇技术性文章,旨在为初学者提供一份关于如何使用Python进行数据分析的入门指南。我们将从安装必要的工具开始,然后逐步介绍如何导入数据、处理数据、进行数据可视化以及建立预测模型。本文的目标是帮助读者理解数据分析的基本步骤和方法,并通过实际的代码示例来加深理解。
95 3
|
2月前
|
存储 数据采集 数据可视化
Pandas数据应用:电子商务数据分析
本文介绍如何使用 Pandas 进行电子商务数据分析,涵盖数据加载、清洗、预处理、分析与可视化。通过 `read_csv` 等函数加载数据,利用 `info()` 和 `describe()` 探索数据结构和统计信息。针对常见问题如缺失值、重复记录、异常值等,提供解决方案,如 `dropna()`、`drop_duplicates()` 和正则表达式处理。结合 Matplotlib 等库实现数据可视化,探讨内存不足和性能瓶颈的应对方法,并总结常见报错及解决策略,帮助提升电商企业的数据分析能力。
154 73
|
1天前
|
Python
python pandas学习(一)
该代码段展示了四个主要操作:1) 删除指定列名,如商品id;2) 使用正则表达式模糊匹配并删除列,例如匹配订单商品名称1的列;3) 将毫秒级时间戳转换为带有时区调整的日期时间格式,并增加8小时以适应本地时区;4) 将列表转换为DataFrame后保存为Excel文件,文件路径和名称根据变量拼接而成。
12 3
|
1月前
|
存储 数据采集 数据可视化
Pandas数据应用:医疗数据分析
Pandas是Python中强大的数据操作和分析库,广泛应用于医疗数据分析。本文介绍了使用Pandas进行医疗数据分析的常见问题及解决方案,涵盖数据导入、预处理、清洗、转换、可视化等方面。通过解决文件路径错误、编码不匹配、缺失值处理、异常值识别、分类变量编码等问题,结合Matplotlib等工具实现数据可视化,并提供了解决常见报错的方法。掌握这些技巧可以提高医疗数据分析的效率和准确性。
81 22
|
1月前
|
存储 数据挖掘 数据处理
Python Pandas入门:行与列快速上手与优化技巧
Pandas是Python中强大的数据分析库,广泛应用于数据科学和数据分析领域。本文为初学者介绍Pandas的基本操作,包括安装、创建DataFrame、行与列的操作及优化技巧。通过实例讲解如何选择、添加、删除行与列,并提供链式操作、向量化处理、索引优化等高效使用Pandas的建议,帮助用户在实际工作中更便捷地处理数据。
47 2
|
2月前
|
数据采集 数据可视化 索引
Pandas数据应用:股票数据分析
本文介绍了如何使用Pandas库进行股票数据分析。首先,通过pip安装并导入Pandas库。接着,从本地CSV文件读取股票数据,并解决常见的解析错误。然后,利用head()、info()等函数查看数据基本信息,进行数据清洗,处理缺失值和重复数据。再者,结合Matplotlib和Seaborn进行数据可视化,绘制收盘价折线图。最后,进行时间序列分析,设置日期索引、重采样和计算移动平均线。通过这些步骤,帮助读者掌握Pandas在股票数据分析中的应用。
93 5
|
3月前
|
机器学习/深度学习 算法 数据挖掘
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
198 4
数据分析的 10 个最佳 Python 库
|
3月前
|
存储 数据可视化 数据挖掘
使用Python进行数据分析和可视化
本文将引导你理解如何使用Python进行数据分析和可视化。我们将从基础的数据结构开始,逐步深入到数据处理和分析的方法,最后通过实际的代码示例来展示如何创建直观的数据可视化。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和技巧。让我们一起探索数据的世界,发现隐藏在数字背后的故事!
146 5

推荐镜像

更多