【Python】数据分析:numpy文本数据读取+索引切片

简介: 【Python】数据分析:numpy文本数据读取+索引切片

1-1 数据导入和数组转置

  • np.loadtxt(framme,dtype='dataType',delimmiter='分隔符',skiprows=''(跳过的行数'),usecols=''需要用到的行数',unpack='Ture/Flase(是否转置)':加载文本文件数据
    V4V1P%[LEG[}[H1]5GTZ}85.png

loadtxt参数意义.png

  • numpy数组转置的是4种方法
  • np.loadtxt中的参数unpack值设置为TRUE
  • 使用数组的.T属性进行转置
  • 使用数组的transpose()方法进行转置
  • 使用numpy数组的swapaxes方法

实例如下:

import numpy as np
filepath = './doubantop250.csv'
t1 = np.loadtxt(filepath,usecols=(1,2,3),delimiter=',',dtype='float')
print(t1)
# 转置的四种方式
# first method:Set the value of parameter "unpack" —— True
t2 = np.loadtxt(filepath,usecols=(1,2,3),delimiter=',',dtype='float',unpack=True)
# second method: use the '.T' attributions of array's
t3 = t1.T
print(t3)
# third method: use the method of 'transpose'
t4 = t1.transpose()
print(t4)
# forth method: swapaxes(arguments:axes needed swapped)
t5 = t1.swapaxes(0,1)
print(t5)

运行结果:

({WK8CH9RB5F1}WS27`BTT7.png

运行结果.png

1-2 numpy数组索引与切片

import numpy as np
filename = './doubantop250.csv'
t1 = np.loadtxt(filename,delimiter=',',dtype='float',usecols=(1,2,3))
# print(t1)
# 取行操作
print(t1[0])
print(t1[0,:])
# 取连续的多行
print(t1[3:])
print(t1[3:,:])
# 取不连续的多行
print(t1[[1,3,13,19]])
print(t1[[1,2,4,6],:])
# 取列
print(t1[:,0])
# 取连续的列
print(t1[:,2:])
# 取不连续的列
print(t1[:,[1,2]])
# 取第2-5行,2-3列
# 取多个位置的交叉数据
print(t1[1:5,1:3])
# 取不相邻的位置的数据信息
print(t1[[1,4,6],[0,1,2]])

import numpy as np
filepath = './doubantop250.csv'
t1 = np.loadtxt(filepath,delimiter=',',usecols=(1,2,3))
print(t1<9.5)
t1[t1 < 9.5] = 0
print(t1[:,1])
# if-else操作
np.where(t1>=9.6,10,0)
print(t1)
# clip(m,n)把数组中小于m的替换成m,大于n的替换成n
目录
相关文章
|
2月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
本文将引导读者了解如何使用Python进行数据分析,从安装必要的库到执行基础的数据操作和可视化。通过本文的学习,你将能够开始自己的数据分析之旅,并掌握如何利用Python来揭示数据背后的故事。
|
3月前
|
存储 数据可视化 数据挖掘
Python数据分析项目:抖音短视频达人粉丝增长趋势
Python数据分析项目:抖音短视频达人粉丝增长趋势
|
3月前
|
存储 数据可视化 数据挖掘
使用Python进行数据分析和可视化
本文将引导你理解如何使用Python进行数据分析和可视化。我们将从基础的数据结构开始,逐步深入到数据处理和分析的方法,最后通过实际的代码示例来展示如何创建直观的数据可视化。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和技巧。让我们一起探索数据的世界,发现隐藏在数字背后的故事!
146 5
|
3月前
|
数据采集 存储 数据可视化
Python数据分析:揭秘"黑神话:悟空"Steam用户评论趋势
Python数据分析:揭秘"黑神话:悟空"Steam用户评论趋势
|
3月前
|
数据采集 数据可视化 数据挖掘
掌握Python数据分析,解锁数据驱动的决策能力
掌握Python数据分析,解锁数据驱动的决策能力
|
3月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第42天】本文将介绍如何使用Python进行数据分析和可视化。我们将从数据导入、清洗、探索性分析、建模预测,以及结果的可视化展示等方面展开讲解。通过这篇文章,你将了解到Python在数据处理和分析中的强大功能,以及如何利用这些工具来提升你的工作效率。
|
3月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
【10月更文挑战第42天】本文是一篇技术性文章,旨在为初学者提供一份关于如何使用Python进行数据分析的入门指南。我们将从安装必要的工具开始,然后逐步介绍如何导入数据、处理数据、进行数据可视化以及建立预测模型。本文的目标是帮助读者理解数据分析的基本步骤和方法,并通过实际的代码示例来加深理解。
95 3
|
3月前
|
数据采集 数据可视化 数据挖掘
Python数据分析:Pandas库实战指南
Python数据分析:Pandas库实战指南
|
3月前
|
数据采集 数据可视化 数据挖掘
深入浅出:使用Python进行数据分析的基础教程
【10月更文挑战第41天】本文旨在为初学者提供一个关于如何使用Python语言进行数据分析的入门指南。我们将通过实际案例,了解数据处理的基本步骤,包括数据的导入、清洗、处理、分析和可视化。文章将用浅显易懂的语言,带领读者一步步掌握数据分析师的基本功,并在文末附上完整的代码示例供参考和实践。
|
3月前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集

热门文章

最新文章

推荐镜像

更多