需求
当前数仓架构流程图如下图所示,不支持端到端数据血缘,数据异常排查及影响分析比较被动,需要端到端数据血缘及元数据管理。业务系统:各种制造业业务系统(高速迭代、重构、新建中) 数仓开发平台:数栖平台,支持数仓内各层级的DAG调度血缘图数仓导出库:PG BI可视化系统:FineBI,支持内部数据集、图表的血缘通过调研分析,引入datahub做元数据管理平台,实现效果如下图展示。
方案
实现如下端到端血缘图:BI报表/仪表盘(dashboard)->BI组件(chart)->BI数据集->数仓导出库(PG)->数仓数据资产(数栖平台)->上游业务系统
工作内容:
- ✅datahub中自定义FineBI、数栖平台的plateform及图表
- ✅解析FineBI数据库,获取FineBI中BI报表/仪表盘(dashboard)->BI组件(chart)->BI数据集的血缘关系,调用Datahub rest emiter接口,datahub中生成血缘。
- ✅获取BI数据集的SQL代码,通过sqllineage解析BI数据集与数仓导出库(PG)的血缘关系,调用Datahub rest emiter接口,datahub中生成血缘。
- ✅获取数栖平台数据库中工作流、Hive任务的关系,获取Hive任务的SQL代码,通过sqllineage解析SQL代码的血缘,调用Datahub rest emiter接口,datahub中生成血缘。
本文介绍:
- ✅datahub中自定义FineBI、数栖平台的plateform及图表
- ✅通过sqllineage解析SQL生成血缘关系
- ✅调用Datahub rest emiter接口,datahub中生成血缘
前置工作
- 安装Datahub :Datahub实验环境搭建
- 安装sqllineage
datahub自定义图标
[cloud@dp-web-uic1 datahub_ingest]$ datahub put platform --name fine_bi --display_name "FineBI" --logo "https://www.finebi.com/images/logo-FineBI.png" ✅ Successfully wrote data platform metadata for urn:li:dataPlatform:fine_bi to DataHub (DataHubRestEmitter: configured to talk to http://localhost:8080) [cloud@dp-web-uic1 ~]$ datahub put platform --name yuan_xiang --display_name "源象" --logo "https://www.dtwave.com/images/index/product/shuqi.svg" ✅ Successfully wrote data platform metadata for urn:li:dataPlatform:yuan_xiang to DataHub (DataHubRestEmitter: configured to talk to http://localhost:8080) [cloud@dp-web-uic1 ~]$ datahub put platform --name dolphinscheduler --display_name "海豚调度" --logo "https://dolphinscheduler.apache.org/img/hlogo_white.svg" ✅ Successfully wrote data platform metadata for urn:li:dataPlatform:dolphinscheduler to DataHub (DataHubRestEmitter: configured to talk to http://localhost:8080) [cloud@dp-web-uic1 datahub_ingest]$ datahub put platform --name statrocks --display_name "StarRocks" --logo "https://docs.starrocks.io/static/b660bcde69091ea56bd94cac0a907018/95f17/starrocks-logo_en-us.png" ✅ Successfully wrote data platform metadata for urn:li:dataPlatform:statrocks to DataHub (DataHubRestEmitter: configured to talk to http://localhost:8080)
sqllineage解析SQL生成血缘关系
- sqllineage解析SQL生成血缘测试
from sqllineage.runner import LineageRunner def test_create_as(): sql=""" -- mes数据中获取每个批次第一次上线扫码时间 drop table if exists sda${db_para}.tmp_sda_delivety_complete_sr_sum_00; create table if not exists sda${db_para}.tmp_sda_delivety_complete_sr_sum_00 as select min(produce_date) min_produce_DATE, mo_lot_no, organization_id from bda${db_para}.BDA_MES_PRODUCT_SUMMARY where factory_no ='CY-SR' and step_name in ('OC上线组装','整机组装1') group by mo_lot_no, organization_id ; -- 订单承诺 drop table if exists sda${db_para}.tmp_sda_delivety_complete_sr_sum_01_1; create table if not exists sda${db_para}.tmp_sda_delivety_complete_sr_sum_01_1 as select t1.version_id , t1.promise_id , t1.organization_id , t1.order_id , t1.order_no , t1.order_stage , t1.order_type , t1.so_type , t1.order_status , t1.order_priority , t1.promise_status , t1.product_id , t1.product_no , t1.product_model , t1.order_qty , t1.bu_name , t1.rcv_client_name , t1.prepared_client_name , t1.order_source , t1.om_user_name , t1.term_cust , t1.to_pur_time , t1.factory_no , t1.mo_lot_no , t1.completed_qty , t1.mo_audit_status , t1.req_arrival_time , t1.mtr_ready_time , t1.plan_promise_time , t1.promise_date_change_reason , t1.schedule_start_time , t1.schedule_end_time , t1.pps_type , t1.pps_exception_info , t1.promise_diff_day , t1.promise_delivery_cycle , t1.change_reason , t1.client_abbr , t1.item_type_product , t1.match_forecast , t1.software_flag , t1.risk_level , t1.risk_reason , t1.ckd_type , t1.crt_user , t1.crt_time , t1.upd_user , t1.upd_time , t1.crt_user_name , t1.upd_user_name from bda${db_para}.bda_whole_pto_order t1 left join bda${db_para}.bda_promise_history_record t2 on t1.promise_id = t2.promise_id and coalesce(t2.afterchangereason,'') = 'AGAIN_PLAN' where t1.version_id like '%最新版本%' and t2.promise_id is null union all select t1.version_id , t1.promise_id , t1.organization_id , t1.order_id , t1.order_no , t1.order_stage , t1.order_type , t1.so_type , t1.order_status , t1.order_priority , t1.promise_status , t1.product_id , t1.product_no , t1.product_model , t1.order_qty , t1.bu_name , t1.rcv_client_name , t1.prepared_client_name , t1.order_source , t1.om_user_name , t1.term_cust , t1.to_pur_time , t1.factory_no , t1.mo_lot_no , t1.completed_qty , t1.mo_audit_status , t1.req_arrival_time , t1.mtr_ready_time , t1.plan_promise_time , t1.promise_date_change_reason , t1.schedule_start_time , t1.schedule_end_time , t1.pps_type , t1.pps_exception_info , t1.promise_diff_day , t1.promise_delivery_cycle , t1.change_reason , t1.client_abbr , t1.item_type_product , t1.match_forecast , t1.software_flag , t1.risk_level , t1.risk_reason , t1.ckd_type , t1.crt_user , t1.crt_time , t1.upd_user , t1.upd_time , t1.crt_user_name , t1.upd_user_name from ( select t1.version_id , t1.promise_id , t1.organization_id , t1.order_id , t1.order_no , t1.order_stage , t1.order_type , t1.so_type , t1.order_status , t1.order_priority , t1.promise_status , t1.product_id , t1.product_no , t1.product_model , t1.order_qty , t1.bu_name , t1.rcv_client_name , t1.prepared_client_name , t1.order_source , t1.om_user_name , t1.term_cust , t1.to_pur_time , t1.factory_no , t1.mo_lot_no , t1.completed_qty , t1.mo_audit_status , t1.req_arrival_time , t1.mtr_ready_time , t1.plan_promise_time , t1.promise_date_change_reason , t1.schedule_start_time , t1.schedule_end_time , t1.pps_type , t1.pps_exception_info , t1.promise_diff_day , t1.promise_delivery_cycle , t1.change_reason , t1.client_abbr , t1.item_type_product , t1.match_forecast , t1.software_flag , t1.risk_level , t1.risk_reason , t1.ckd_type , t1.crt_user , t1.crt_time , t1.upd_user , t1.upd_time , t1.crt_user_name , t1.upd_user_name , row_number() over (partition by t1.promise_id order by t1.version_id desc) rn from bda${db_para}.bda_whole_pto_order t1 where version_id not like '%最新版本%' and not exists (select 1 from bda${db_para}.bda_whole_pto_order t2 where version_id like '%最新版本%' and t1.promise_id = t2.promise_id ) ) t1 left join bda${db_para}.bda_promise_history_record t2 on t1.promise_id = t2.promise_id and coalesce(t2.afterchangereason,'') = 'AGAIN_PLAN' where t2.promise_id is null and t1.rn = 1 ; -- CRM订单与工单关联 drop table if exists sda${db_para}.tmp_sda_delivety_complete_sr_sum_01; create table if not exists sda${db_para}.tmp_sda_delivety_complete_sr_sum_01 as select bu.dept_name bu_name ,t2.organization_id -- 20220701 wyr -- ,'514' Organization_Id ,t1.item_code item_code ,cus.cus_name -- 收货客户 ,t1.so_header_id ,t1.so_line_id so_line_id ,t1.so_code so_header_code ,t1.line_no so_line_code ,t2.wip_entity_name -- 工单号 ,t2.lot_number -- 批次 ,t2.Project_Name ,t1.om_user_name Om_User_Name -- 销管 ,t1.sale_name sales_user -- 销售 ,case when bsse.is_source_forecast = '1' and mio.planning_make_buy_code = '制造' and mig.min_class like '%PC模块%' then date_add(t1.pur_start_time, 20) when bsse.is_source_forecast = '1' and mio.planning_make_buy_code = '制造' and mig.min_class not like '%PC模块%' then date_add(t1.pur_start_time, 35) when bsse.is_source_forecast = '0' and mio.planning_make_buy_code = '制造' and mig.min_class like'%PC模块%' then date_add(t1.pur_start_time, 25) when bsse.is_source_forecast = '0' and mio.planning_make_buy_code = '制造' and mig.min_class not like '%PC模块%' then date_add(t1.pur_start_time, 45) when bsse.is_source_forecast is null and mio.planning_make_buy_code = '制造' and mig.min_class like '%PC模块%' then date_add(t1.pur_start_time, 20) when bsse.is_source_forecast is null and mio.planning_make_buy_code = '制造' and mig.min_class not like '%PC模块%' then date_add(t1.pur_start_time, 30) else t1.pur_start_time end stat_date -- 统计日期 提交下采购日期 + 对应日期 ,substr(t1.expected_delivery_date, 1, 10) delivety_time -- 计划发运日期 ,substr(t1.crt_time, 1, 10) crm_create_time -- 销售订单创建时间 ,substr(t1.pur_start_time, 1, 10) purchase_date -- 提交下采购时间 ,substr(t1.produce_start_time, 1, 10) produce_date -- 下生产时间 ,substr(t2.Xwh_Creation_Date, 1, 10) wip_create_date -- 委外工单创建日期 ,substr(t2.Scheduled_Start_Date, 1, 10) Scheduled_Start_Date -- 工单齐套日期 ,substr(t2.Mc_Creation_Date, 1, 10) Mc_Creation_Date -- 生管确认时间 ,substr(t2.first_trx_date, 1, 10) first_finish_date -- 首次完工入库日期 ,substr(t2.last_trx_date, 1, 10) last_finish_date -- 完全完工入库日期 ,t1.so_type_name order_type -- 订单类型 ,t2.wip_job_status -- 工单状态 ,t2.Job_Type -- 工单类型 ,t2.Class_Code -- 工单分类 ,t2.Quantity_Completed -- 工单已完工数量 ,t1.qty -- 订单数量 ,case when t6.order_no is not null then t6.match_forecast else bsse.is_source_forecast end as is_source_forecast -- 订单有无预测 ,mio.planning_make_buy_code -- 整机加工模式 制造/采购 ,case when mig.min_class like '%PC模块%' then 'PC模块' else '其他' end prod_type ,datediff(t2.last_trx_date, t1.pur_start_time) supply_cycle -- 供应链周期 (取多个工单中最早的完工入库时间,计算供应链周期) ,case when t1.so_type_name <> '备品订单' and t2.first_trx_date is not null then 'Y' else 'N' end supply_cycle_flag -- 供应链周期标识 ,case when t1.so_type_name = '客户订单' and t2.Job_Type = '标准' and ( (bsse.is_source_forecast = '1' and mio.planning_make_buy_code = '制造' and mig.min_class like '%PC模块%' and datediff(t2.first_trx_date, t1.pur_start_time) <= 20) or (bsse.is_source_forecast = '1' and mio.planning_make_buy_code = '制造' and mig.min_class not like '%PC模块%' and datediff(t2.first_trx_date, t1.pur_start_time) <= 35) or (bsse.is_source_forecast = '0' and mio.planning_make_buy_code = '制造' and mig.min_class like '%PC模块%' and datediff(t2.first_trx_date, t1.pur_start_time) <= 25) or (bsse.is_source_forecast = '0' and mio.planning_make_buy_code = '制造' and mig.min_class not like '%PC模块%' and datediff(t2.first_trx_date, t1.pur_start_time) <= 45) or (bsse.is_source_forecast is null and mio.planning_make_buy_code = '制造' and mig.min_class like '%PC模块%' and datediff(t2.first_trx_date, t1.pur_start_time) <= 20) or (bsse.is_source_forecast is null and mio.planning_make_buy_code = '制造' and mig.min_class not like '%PC模块%' and datediff(t2.first_trx_date, t1.pur_start_time) <= 35) ) and t2.first_trx_date is not null then 'Y' else 'N' end delivety_complete_flag -- 交付达成标识 ,case when t1.so_type_name in ('客户订单','销售订单') and t2.Job_Type = '标准' then 'Y' else 'N' end is_delivety_complete_flag -- 交付达成标识 ,t1.expected_delivery_date overseas_stat_date -- 海外订单交付达成归集时间 ,case when t1.so_type_name in ('客户订单','销售订单') -- and bsse.is_source_forecast is not null and datediff(t2.last_trx_date, t1.expected_delivery_date) <= 0 and t2.last_trx_date is not null then 'Y' else 'N' end overseas_is_delivety_complete_flag -- 海外订单交付达成标识 ,case when t1.so_type_name in ('客户订单','销售订单') -- and bsse.is_source_forecast is not null and (datediff('${bizDate}', t1.expected_delivery_date) >= 0 or (datediff('${bizDate}', t1.expected_delivery_date) < 0 and datediff(t2.last_trx_date, t1.expected_delivery_date) <= 0) ) then 'Y' else 'N' end overseas_delivety_complete_flag -- 海外订单交付达成数据范围 ,row_number() over(partition by t2.Lot_Number order by t1.pur_start_time) rn ,t2.Start_Quantity wip_qty ,t2.fisrt_picking_date -- 首次领料时间 ,t3.first_ship_date ,t3.last_ship_date ,-1*trx33.shipped_qty shipped_qty -- 已出货数量 ,t2.Quantity_Completed + trx33.shipped_qty as difference_qty -- 差异 ,dmpm.screen_size -- 尺寸 ,t2.Created_By as pm_user -- 生管负责人 ,substr(t3.min_scheduled_date, 1, 10) as min_scheduled_date -- 实际齐套日期 ,substr(t5.min_produce_DATE, 1, 10) min_produce_date ,t1.bt_name -- add by tjl 2022.07.21 ,bsse.so_line_group_id -- ,substr(t3.online_date, 1, 10) as online_date ,datediff(substr(t1.expected_delivery_date, 1, 10),substr(t1.pur_start_time, 1, 10)) as cus_expect_cycle -- 客户期望周期 ,case when t6.order_no is not null and t6.plan_promise_time is not null then datediff(substr(t6.plan_promise_time,1,10),substr(t1.pur_start_time, 1, 10)) -- 如有承诺日期 预计供应链=承诺日期-下采购日期 when t6.order_no is not null and t6.plan_promise_time is null and t2.wip_entity_name is null then datediff(date_add(substr(t6.mtr_ready_time, 1, 10),6),substr(t1.pur_start_time, 1, 10)) -- 无承诺日期 未开工单,= 齐套日期+6 when t2.wip_entity_name is not null and t3.online_date is not null then datediff(date_add(substr(t3.online_date, 1, 10),4),substr(t1.pur_start_time, 1, 10)) -- 已开工单,已有上线日期,=上线日期+4 when t2.wip_entity_name is not null and t3.online_date is null then datediff(date_add(substr(t2.Scheduled_Start_Date, 1, 10),6),substr(t1.pur_start_time, 1, 10)) -- 已开工单,暂无上线日期,=齐套日期+6 end as estimate_supply_cycle -- 预计供应链周期 ,t8.cus_level -- from bda${db_para}.bda_oms_so_lines t1 FROM bda${db_para}.bda_sd_so t1 left join bda${db_para}.bda_sd_so_ext bsse on t1.so_line_id = bsse.so_line_id and bsse.part_dt IN ('crm_so', 'oms_so') join bda${db_para}.bda_job_inv_trx_zj_dtl t2 on bsse.so_line_group_id = t2.source_line_id -- and t1.so_header_id = t2.source_header_id left join dim${db_para}.dim_hcm_orgunit bu on t1.bill_bu_id = bu.dept_oid left join bda${db_para}.comm_market_cus cus on t1.rec_cus_code = cus.id -- join (select item_value, fullname -- from o_crm${db_para}.comm_dictionary_detail -- where parentcode = '$CRM_DELIVERY_SO_TYPE') cdd -- on cdd.item_value = t1.so_type left join dim${db_para}.md_item_group mig on t2.item_code = mig.item_code left join dim${db_para}.md_item_org mio on t1.item_code = mio.item_code and mio.Organization_Id = '514' left join dim${db_para}.dim_md_prod_model dmpm on mig.product_model = dmpm.prod_model left join bda${db_para}.bda_job_dtl t3 on t2.wip_entity_name = t3.wip_entity_name left join o_md${db_para}.md_prod_model t4 on mig.product_model = t4.product_model left join (select sum(trx_so.trx_qty) shipped_qty ,trx_so.bch_nbr from bda${db_para}.bda_inv_item_trx_bach_dtl trx_so where trx_so.trx_type_id = 33 group by trx_so.bch_nbr) trx33 on trx33.bch_nbr = t2.lot_number left join sda${db_para}.tmp_sda_delivety_complete_sr_sum_00 t5 on t5.mo_lot_no = t2.lot_number left join sda${db_para}.tmp_sda_delivety_complete_sr_sum_01_1 t6 on t1.line_code = t6.order_no left join bda${db_para}.bda_wip_mo_header t7 on t3.wip_entity_name = t7.ebs_mo_code left join (select t.cus_code , t2.hcm_dept_oid as dept_oid , max(t.cus_level) as cus_level_id , max(t1.fullname) as cus_level , t2.hcm_dept_name as dept_name from o_crm${db_para}.cus_bu_ext_info t left join o_crm${db_para}.comm_dictionary_detail t1 on t.cus_level = t1.item_value and t1.parentcode = '$CRM_CUS_LEVEL' inner join dim${db_para}.dim_hcm_crm_org_map t2 on t.bu_code = t2.dept_code where t2.dept_name not like '%失效%' and t.is_deleted = '0' and t2.hcm_dept_oid is not null group by t.cus_code,t2.hcm_dept_oid,t2.hcm_dept_name) t8 on t1.rec_cus_code = t8.cus_code and bu.dept_oid = t8.dept_oid where t1.pur_start_time is not null and t1.is_onhand_out in ('0','否') and t4.finished_or_semi_finished_prod = '成品' AND t1.part_dt IN ('crm_so', 'oms_so') and t3.wip_job_status<>'已取消' and (t3.wip_job_status<>'已关闭' or t3.quantity_completed >0) and coalesce(t7.source_demand_max,'')<>'相关需求' ; insert overwrite table sda${db_para}.sda_delivety_complete_sr_sum select t.bu_name ,t.Organization_Id ,t.item_code ,t.cus_name -- 收货客户 ,t.so_header_code ,t.so_line_code ,t.wip_entity_name ,t.lot_number ,t.Project_Name ,t.Om_User_Name -- 销管 ,t.sales_user -- 销售 ,t.delivety_time -- 计划发运日期 ,t.crm_create_time -- 销售订单创建时间 ,t.purchase_date -- 提交下采购时间 ,t.produce_date -- 下生产时间 ,t.stat_date -- 统计日期 提交下采购日期 + 对应日期 ,t.wip_create_date -- 委外工单创建日期 ,t.Scheduled_Start_Date -- 工单齐套日期 ,t.Mc_Creation_Date -- 生管确认时间 ,t.first_finish_date -- 首次完工入库日期 ,t.last_finish_date -- 完全完工入库日期 ,t.order_type -- 订单类型 ,t.job_type ,t.supply_cycle -- 供应链周期 ,t.supply_cycle_flag -- 供应链周期标识 ,t.delivety_complete_flag -- 交付达成标识 ,t.is_delivety_complete_flag ,t.overseas_stat_date ,t.overseas_is_delivety_complete_flag ,t.overseas_delivety_complete_flag ,t.is_source_forecast is_source_forecast ,t.wip_qty ,t.fisrt_picking_date ,t.first_ship_date ,t.last_ship_date ,'MTO' order_mode ,current_timestamp() ,'${bizDate}' ,t.shipped_qty -- 已出货数量 ,t.difference_qty -- 差异 ,t.screen_size -- 尺寸 ,t.pm_user -- 生管负责人 ,t.min_scheduled_date ,t.min_produce_date ,t.bt_name -- add by tjl 2022.07.21 ,t.so_line_group_id ,t.Class_Code -- add by wyr 2022.09.23 ,t.cus_level as cus_level -- tjl 2022.11.02 ,t.cus_expect_cycle as cus_expect_cycle -- 客户期望周期 -- add by tjl 2022.11.02 ,t.estimate_supply_cycle as estimate_supply_cycle -- 预计供应链周期 -- add by tjl 2022.11.02 from sda${db_para}.tmp_sda_delivety_complete_sr_sum_01 t where t.rn = 1 ; """ result = LineageRunner(sql.replace("${db_para}",'')) print(result.source_tables) print(result.target_tables) if __name__ == "__main__": test_create_as()
调用Datahub rest emiter接口,datahub中生成血缘
#!/usr/bin/python3 # coding=utf8 # ----------------------------------------------------------------------------------- # 日 期:2022.08.30 # 作 者:zds # 用 途: 数仓Hive血缘 # 1. 通过Trino查询数据库,获取数栖平台调度DAG血缘关系 # 2. 注意:直接操作数据库修改权限,BI有大概几分钟的缓存时间,需要等待数据更新。 # 3. 注意:fine_pack_filter中create_type=3,是用户角色。使用的rowid = fine_user中的id,在最终用户权限上配置的。 # . 4. "且" = 34;"或"=35 # 5. 依赖数仓中manual开头的表,这些表通过爬虫采集,数据延迟一天 # ----------------------------------------------------------------------------------- import json import time import datetime import base64 import re import pandas as pd from simple_ddl_parser import DDLParser from sqlalchemy import create_engine from sqllineage.runner import LineageRunner import datahub.emitter.mce_builder as builder from datahub.emitter.rest_emitter import DatahubRestEmitter class DWHiveLineage: def __init__(self): self.shuxi_db = create_engine("mysql+pymysql://xxxx@p-dbsec-mysql.gz.cvte.cn:10006/uic") def get_task_sql(self): # tasktype_id in (4,8,11,12,16) 全部有源码的任务 sql = """ select cata_id,flow_id,task_id,task_name,task_type_name,source, parameter from ( select rtc.task_id ,rtc.source,rtc.parameter,bt.task_name,bt.tasktype_id,btt.task_type_name,bc.cata_id,bc.flow_id from dipper.rel_task_config rtc left join ( select task_name,tasktype_id,task_id,flow_id from dipper.bas_task where tasktype_id in (12,16) and tasktype_id is not null and ws_id = 11 and invalid = 0 )bt on rtc.task_id = bt.task_id left join dipper.bas_tasktype btt on btt.tasktype_id = bt.tasktype_id left join (select * from dipper.bas_cata where invalid = 0 and ws_id = 11) bc on bc.flow_id = bt.flow_id )t where t.source is not null and t.task_name is not null order by flow_id """ df = pd.read_sql(sql=sql, con=self.shuxi_db) return df def list_lineages(self): df = self.get_task_sql() dataset_lineages = {} idx = 0 for row in df.to_dict(orient="records"): try: sql = base64.b64decode(row['source']).decode('utf-8') print("============" + row['task_name'] + "========") result = LineageRunner(sql.replace("${db_para}", '')) # 一个文件中有多个SQL语句,需要拆分处理 if len(result.target_tables) > 2: print("目标表有多个,需要拆分SQL再计算血缘:【{}】".format(result.target_tables)) else: dataset_lineages[str(result.target_tables[0])] = [str(t) for t in self.source_tables] idx += 1 except Exception as e: print("解析任务【{}】SQL失败。".format(row['task_name'])) print(e) break if idx > 10: break return dataset_lineages def generate_lineages(self): result_tables = self.list_lineages() for target_table in result_tables.keys(): input_tables_urn = [] for source_table in result_tables[target_table]: input_tables_urn.append(builder.make_dataset_urn("hive", source_table)) # Construct a lineage object. lineage_mce = builder.make_lineage_mce( input_tables_urn, builder.make_dataset_urn("hive", target_table), ) # Create an emitter to the GMS REST API. emitter = DatahubRestEmitter("http://xx.xx.xx.xx:8080") # Emit metadata! emitter.emit_mce(lineage_mce) try: emitter.emit_mce(lineage_mce) print("添加数仓表 【{}】血缘成功".format(target_table)) except Exception as e: print("添加数仓表 【{}】血缘失败".format(target_table)) print(e) break if __name__ == "__main__": dw = DWHiveLineage() dw.generate_lineages()
效果图