15 贝叶斯方法

简介: 15 贝叶斯方法

前面,介绍了惠更斯、伯努利和棣莫弗等人的重大成果,无疑在这些重要发明中,二项分布都占据着举重轻重的地位。这在早期的概率统计史当中,也是唯一一个研究程度很深的分布。但除了伯努利的大数定律及棣莫弗的二项逼近的研究成果外,在18世纪中叶,为了解决二项分布概率的估计问题,出现了一个影响极为广泛的贝叶斯方法,贝叶斯方法经过长足的发展,如今已经成为数理统计学中的两个主要学派之一:贝叶斯学派,牢牢占据数理统计学领域的半壁江山。

据数理统计学简史一书,托马斯.贝叶斯,此人在18世纪上半叶的欧洲学术界,并不算得上很知名,在提出贝叶斯定理之前,也未发表过片纸只字的科学论著,套用当今的话来说,他便是活生生一个民间学术屌丝。

未发表过任何科学著作,但一个人如果热爱研究,喜好学术的话,必找人交流。于此,诸多重大发明定理都出现在学者之间的一些书信交流中。奇怪的是,贝叶斯这方面的书信材料也不多。或许读者读到此处,已知我意,会说这一切在他提出贝叶斯定理之后有了改变,但读者朋友只猜对了一半。

贝叶斯的确发表了一篇题为An essay towards solving a problem in the doctrine of chances(机遇理论中一个问题的解)的遗作,此文在他发表后很长一段时间起,在学术界没有引起什么反响,直到20世纪以来,突然受到人们的重视,此文也因此成为贝叶斯学派最初的奠基石(又一个梵高式的人物)。

有人说贝叶斯发表此文的动机是为了解决伯努利和棣莫弗未能解决的二项分布概率P的“逆概率”问题。所谓逆概率,顾名思义,就是求概率问题的逆问题:已知时间的概率为P,可由之计算某种观察结果的概率如何;反过来,给定了观察结果,问由之可以对概率P作何推断。也就是说,正概率是由原因推结果,称之为概率论;而逆概率是结果推原因,称之为数理统计。

目录
相关文章
|
4月前
|
人工智能 算法
变分推断和贝叶斯方法
变分推断和贝叶斯方法
|
7月前
|
算法
【数理统计实验(二)】参数估计
【数理统计实验(二)】参数估计
|
7月前
|
机器学习/深度学习 算法 数据可视化
R语言逻辑回归和泊松回归模型对发生交通事故概率建模
R语言逻辑回归和泊松回归模型对发生交通事故概率建模
微分方程——Volterra食饵-捕食者模型
微分方程——Volterra食饵-捕食者模型
310 0
|
机器学习/深度学习 资源调度 并行计算
经典机器学习系列(一)【 贝叶斯分类、 最大似然估计、 最大后验概率估计】
经典机器学习系列(一)【 贝叶斯分类、 最大似然估计、 最大后验概率估计】
226 0
贝叶斯算法人生
贝叶斯算法人生
|
算法 数据挖掘 Python
贝叶斯分类算法
贝叶斯分类算法
90 0
贝叶斯分类算法
|
BI
统计学习--最大似然和贝叶斯估计的联系
概率是已知模型和参数,推数据;统计是已知数据,推模型和参数
122 0
统计学习--最大似然和贝叶斯估计的联系
|
机器学习/深度学习 算法
统计学习-感知机算法
感知机(perceptron):有监督学习、判别模型,SVM的基础
146 0
统计学习-感知机算法
|
机器学习/深度学习 算法 开发者
回归模型参数估计-3| 学习笔记
快速学习回归模型参数估计-3。
回归模型参数估计-3| 学习笔记