Elasticsearch实战:常见错误及详细解决方案

简介: Elasticsearch实战:常见错误及详细解决方案

Elasticsearch实战:常见错误及详细解决方案

1.read_only_allow_delete":"true"

当我们在向某个索引添加一条数据的时候,可能(极少情况)会碰到下面的报错:

{
  "error": {
    "root_cause": [
      {
        "type": "cluster_block_exception",
        "reason": "blocked by: [FORBIDDEN/12/index read-only / allow delete (api)];"
      }
    ],
    "type": "cluster_block_exception",
    "reason": "blocked by: [FORBIDDEN/12/index read-only / allow delete (api)];"
  },
  "status": 403
}

上述报错是说索引现在的状态是只读模式(read-only),如果查看该索引此时的状态:

GET z1/_settings
#结果如下
{
  "z1" : {
    "settings" : {
      "index" : {
        "number_of_shards" : "5",
        "blocks" : {
          "read_only_allow_delete" : "true"
        },
        "provided_name" : "z1",
        "creation_date" : "1556204559161",
        "number_of_replicas" : "1",
        "uuid" : "3PEevS9xSm-r3tw54p0o9w",
        "version" : {
          "created" : "6050499"
        }
      }
    }
  }
}

可以看到"read_only_allow_delete" : "true",说明此时无法插入数据,当然,我们也可以模拟出来这个错误:

PUT z1
{
  "mappings": {
    "doc": {
      "properties": {
        "title": {
          "type":"text"
        }
      }
    }
  },
  "settings": {
    "index.blocks.read_only_allow_delete": true
  }
}

PUT z1/doc/1
{
  "title": "es真难学"
}

现在我们如果执行插入数据,就会报开始的错误。那么怎么解决呢?

  • 清理磁盘,使占用率低于 85%。
  • 手动调整该项,具体参考官网

这里介绍一种,我们将该字段重新设置为:

PUT z1/_settings
{
  "index.blocks.read_only_allow_delete": null
}

现在再查看该索引就正常了,也可以正常的插入数据和查询了。

2. illegal_argument_exception

有时候,在聚合中,我们会发现如下报错:

{
  "error": {
    "root_cause": [
      {
        "type": "illegal_argument_exception",
        "reason": "Fielddata is disabled on text fields by default. Set fielddata=true on [age] in order to load fielddata in memory by uninverting the inverted index. Note that this can however use significant memory. Alternatively use a keyword field instead."
      }
    ],
    "type": "search_phase_execution_exception",
    "reason": "all shards failed",
    "phase": "query",
    "grouped": true,
    "failed_shards": [
      {
        "shard": 0,
        "index": "z2",
        "node": "NRwiP9PLRFCTJA7w3H9eqA",
        "reason": {
          "type": "illegal_argument_exception",
          "reason": "Fielddata is disabled on text fields by default. Set fielddata=true on [age] in order to load fielddata in memory by uninverting the inverted index. Note that this can however use significant memory. Alternatively use a keyword field instead."
        }
      }
    ],
    "caused_by": {
      "type": "illegal_argument_exception",
      "reason": "Fielddata is disabled on text fields by default. Set fielddata=true on [age] in order to load fielddata in memory by uninverting the inverted index. Note that this can however use significant memory. Alternatively use a keyword field instead.",
      "caused_by": {
        "type": "illegal_argument_exception",
        "reason": "Fielddata is disabled on text fields by default. Set fielddata=true on [age] in order to load fielddata in memory by uninverting the inverted index. Note that this can however use significant memory. Alternatively use a keyword field instead."
      }
    }
  },
  "status": 400
}

这是怎么回事呢?是因为,聚合查询时,指定字段不能是text类型。比如下列示例:

PUT z2/doc/1
{
  "age":"18"
}
PUT z2/doc/2
{
  "age":20
}

GET z2/doc/_search
{
  "query": {
    "match_all": {}
  },
  "aggs": {
    "my_sum": {
      "sum": {
        "field": "age"
      }
    }
  }
}

当我们向elasticsearch中,添加一条数据时(此时,如果索引存在则直接新增或者更新文档,不存在则先创建索引),首先检查该age字段的映射类型。如上示例中,我们添加第一篇文档时(z1索引不存在),elasticsearch会自动的创建索引,然后为age字段创建映射关系(es 就猜此时age字段的值是什么类型,如果发现是text类型,那么存储该字段的映射类型就是text),此时age字段的值是text类型,所以,第二条插入数据,age的值也是text类型,而不是我们看到的long类型。我们可以查看一下该索引的mappings信息:

GET z2/_mapping
#mapping信息如下
{
  "z2" : {
    "mappings" : {
      "doc" : {
        "properties" : {
          "age" : {
            "type" : "text",
            "fields" : {
              "keyword" : {
                "type" : "keyword",
                "ignore_above" : 256
              }
            }
          }
        }
      }
    }
  }
}

上述返回结果发现,age类型是text。而该类型又不支持聚合,所以,就会报错了。解决办法就是:

  • 如果选择动态创建一篇文档,映射关系取决于你添加的第一条文档的各字段都对应什么类型。而不是我们看到的那样,第一次是text,第二次不加引号,就是long类型了不是这样的。
  • 如果嫌弃上面的解决办法麻烦,那就选择手动创建映射关系。首先指定好各字段对应什么类型。后续才不至于出错。

3.Result window is too large

很多时候,我们在查询文档时,一次查询结果很可能会有很多,而 elasticsearch 一次返回多少条结果,由size参数决定:

GET e2/doc/_search
{
  "size": 100000,
  "query": {
    "match_all": {}
  }
}

而默认是最多范围一万条,那么当我们的请求超过一万条时(比如有十万条),就会报:

Result window is too large, from + size must be less than or equal to: [10000] but was [100000]. See the scroll api for a more efficient way to request large data sets. This limit can be set by changing the [index.max_result_window] index level setting.

意思是一次请求返回的结果太大,可以另行参考 scroll API或者设置index.max_result_window参数手动调整size的最大默认值:

#kibana中设置
PUT e2/_settings
{
  "index": {
    "max_result_window": "100000"
  }
}
#Python中设置
from elasticsearch import Elasticsearch
es = Elasticsearch()
es.indices.put_settings(index='e2', body={"index": {"max_result_window": 100000}})

如上例,我们手动调整索引e2size参数最大默认值到十万,这时,一次查询结果只要不超过 10 万就都会一次返回。 注意,这个设置对于索引essize参数是永久生效的。

4.持续更新中

更多优质内容请关注公号:汀丶人工智能;会提供一些相关的资源和优质文章,免费获取阅读。

相关实践学习
以电商场景为例搭建AI语义搜索应用
本实验旨在通过阿里云Elasticsearch结合阿里云搜索开发工作台AI模型服务,构建一个高效、精准的语义搜索系统,模拟电商场景,深入理解AI搜索技术原理并掌握其实现过程。
ElasticSearch 最新快速入门教程
本课程由千锋教育提供。全文搜索的需求非常大。而开源的解决办法Elasricsearch(Elastic)就是一个非常好的工具。目前是全文搜索引擎的首选。本系列教程由浅入深讲解了在CentOS7系统下如何搭建ElasticSearch,如何使用Kibana实现各种方式的搜索并详细分析了搜索的原理,最后讲解了在Java应用中如何集成ElasticSearch并实现搜索。  
相关文章
|
2月前
|
缓存 监控 前端开发
顺企网 API 开发实战:搜索 / 详情接口从 0 到 1 落地(附 Elasticsearch 优化 + 错误速查)
企业API开发常陷参数、缓存、错误处理三大坑?本指南拆解顺企网双接口全流程,涵盖搜索优化、签名验证、限流应对,附可复用代码与错误速查表,助你2小时高效搞定开发,提升响应速度与稳定性。
|
存储 运维 监控
超越传统模型:从零开始构建高效的日志分析平台——基于Elasticsearch的实战指南
【10月更文挑战第8天】随着互联网应用和微服务架构的普及,系统产生的日志数据量日益增长。有效地收集、存储、检索和分析这些日志对于监控系统健康状态、快速定位问题以及优化性能至关重要。Elasticsearch 作为一种分布式的搜索和分析引擎,以其强大的全文检索能力和实时数据分析能力成为日志处理的理想选择。
858 6
|
8月前
|
人工智能 自然语言处理 运维
让搜索引擎“更懂你”:AI × Elasticsearch MCP Server 开源实战
本文介绍基于Model Context Protocol (MCP)标准的Elasticsearch MCP Server,它为AI助手(如Claude、Cursor等)提供与Elasticsearch数据源交互的能力。文章涵盖MCP概念、Elasticsearch MCP Server的功能特性及实际应用场景,例如数据探索、开发辅助。通过自然语言处理,用户无需掌握复杂查询语法即可操作Elasticsearch,显著降低使用门槛并提升效率。项目开源地址:<https://github.com/awesimon/elasticsearch-mcp>,欢迎体验与反馈。
2199 1
|
缓存 关系型数据库 API
京东面试题:ElasticSearch深度分页解决方案!
京东面试题:ElasticSearch深度分页解决方案!
270 0
|
存储 数据采集 数据处理
数据处理神器Elasticsearch_Pipeline:原理、配置与实战指南
数据处理神器Elasticsearch_Pipeline:原理、配置与实战指南
676 12
|
存储 人工智能 安全
保障隐私的Elasticsearch AI搜索解决方案
【8月更文第28天】随着大数据和人工智能技术的发展,搜索引擎在日常生活中扮演着越来越重要的角色。然而,用户隐私保护成为了一个不容忽视的问题。本文将探讨如何在确保用户数据隐私的同时,利用Elasticsearch实现智能搜索功能。我们将介绍一种综合方案,该方案结合了加密技术、差分隐私、匿名化处理以及安全多方计算等方法,以保障用户数据的安全性
930 0
|
缓存 数据处理 数据安全/隐私保护
Elasticsearch索引状态管理实战指南
Elasticsearch索引状态管理实战指南
271 0
|
存储 索引
Elasticsearch索引之嵌套类型:深度剖析与实战应用
Elasticsearch索引之嵌套类型:深度剖析与实战应用
|
安全 数据安全/隐私保护
Elasticsearch 7.* 常见错误以及解决方案
Elasticsearch 7.* 常见错误以及解决方案
737 0
|
存储 JSON 搜索推荐
Springboot2.x整合ElasticSearch7.x实战(三)
Springboot2.x整合ElasticSearch7.x实战(三)
210 0

热门文章

最新文章