五、神经网络相关
人工神经网络 (Artificial Neural Network, ANN):很多人工神经元构成的网络结构模型,这些人工神经元之间的连接强度是可以学习的参数。
人工神经网络通过多个人工神经元连接而成,可以对数据间的复杂关系进行建模。不同节点(人工神经元)之间的连接被赋予了不同的权重,权重代表了该节点对与之连接节点的影响。每个节点代表了一个特定函数,输入这个节点的所有数据经过对应的权重综合计算,输入一个激活函数得到一个新的活性值(抑制或者兴奋)。
从系统观点看,神经网络由大量的神经元连接而成的自适应非线性系统,可以被视为一个可以学习的函数
六、第一部分总结
人工智能是一个非常大的范畴,其包含了诸多的领域,机器学习的是它的分支之一,同时近年来也成为了推动人工智能发展的关键因素。在传统的机器学习中,通过人为选择特征,仅仅通过多选特征归纳出一个预测模型。人为选择特征进行学习极大地限制了正确率,为了解决该问题,提出了表征学习的概念,将特征的选取作为学习的环节。为了学习的更好的特征表示,提出了深度学习。深度学习的模型很多,但现在最常用的是神经网络,因为反向传播的算法能够很好的解决贡献度分配问题。