计算机发展前沿技术——医学领域的人工智能3

简介: 随着科技发展,人工智能技术在教育领域中的应用已取得较大进展。近年来,人工智能(AI)技术和由其引发的大数据时代自社会的各个层面包括我们的思维、生活方式和工作模式产生了巨大的变革;其与医学的结合给医疗系统带来深远的影响。从互联网到云计算,再到由大数据集合而成的人工智能,不断更新的处理手段使医疗行业也开始尝试新的转变,从传统的人工诊疗、教学模式逐步转变为依据机器学习来获取更高效的信息,并在医学多个领域已有比较广泛的应用。本文将从人工智能在医学领域的优势、当前的进展、应用、局限性和未来方向来进行综述。

2.3病理检查
在数字化病理学中,人工智能技术已应用于各种图像处理和判别任务中,包括侧重于对象识别问题的低级任务及更高级别的任务。随着数字化载玻片扫描技术在组织病理学实验室中应用的增多,数字化整体图像将逐步取代常规病理学工作中的载玻片,使用基于WSIS的深度学习系统可对组织进行识别,并对数据进行提取分析。人工智能系统能通过分析组织形状以确定组织图像的分化程度,通过分析淋巴细胞密度,肿瘤基质组成和核等指标,得到有用的预后数据。由于肿瘤免疫治疗的成功,近年来肿瘤微环境中的免疫细胞已经获得了大量的关注。因此,使用人工智能技术对肿瘤浸润免疫细胞进行定量分析成了数字组织病理学图像分析中的新兴主题之一。

3、人工智能在医学领域的应用[3]
1995年美国的HurleyMyers团队研发出Dxrcli-nician教学软件,该软件用人工智能技术训练学生的临床思维;我国在2009年引入该教学软件,但并未大规模投入使用;2006年人工智能技术中的BP神经网络算法被应用于教学质量监控,替代人工日常教学检测;2011年自适应教育平台Knewton与培生教育集团合作,通过提取学生的学习数据,提供个性化学习服务;上述应用说明,人工智能技术已经逐渐应用在高等教育领域。在我国,智能教育刚刚起步,人工智能技术在高等医学教育中的应用前景非常广泛。

3.1基于大数据的医学教育质量监测与评估
完善的教学质量监测与评估是提高教学质量的保障,基于大数据的教学质量监测与评估可以在日常教学过程中实时进行。通过分析大量的反馈信息进行阶段性与结果性评估,从而严格把控教学质量,以便为培养优秀的医疗人才提供保障。高等医学教育具有课程多、学制长、实践性强、专业综合化等特点。

大量的反馈信息有利于教学评估的常态化与全面化,将人工智能评估和传统师生互动有机结合,解决了学生临床实习地点分散、监控难度大的问题,加强及时调整教学模式和方式的落实。

相关文章
|
28天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解人工智能中的深度学习技术及其最新进展
深入理解人工智能中的深度学习技术及其最新进展
|
28天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解人工智能中的深度学习技术及其最新进展
深入理解人工智能中的深度学习技术及其最新进展
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与深度学习:探索未来技术的无限可能
在21世纪,人工智能(AI)和深度学习已经成为推动科技进步的重要力量。本文将深入探讨这两种技术的基本概念、发展历程以及它们如何共同塑造未来的科技景观。我们将分析人工智能的最新趋势,包括自然语言处理、计算机视觉和强化学习,并讨论这些技术在现实世界中的应用。此外,我们还将探讨深度学习的工作原理,包括神经网络、卷积神经网络(CNN)和循环神经网络(RNN),并分析这些模型如何帮助解决复杂的问题。通过本文,读者将对人工智能和深度学习有更深入的了解,并能够预见这些技术将如何继续影响我们的世界。
63 7
|
1月前
|
人工智能 自然语言处理 自动驾驶
技术与人性:探索人工智能伦理的边界####
本文深入探讨了人工智能技术飞速发展背景下,伴随而来的伦理挑战与社会责任。不同于传统摘要直接概述内容,本文摘要旨在引发读者对AI伦理问题的关注,通过提出而非解答的方式,激发对文章主题的兴趣。在智能机器逐渐融入人类生活的每一个角落时,我们如何确保技术的善意使用,保护个人隐私,避免偏见与歧视,成为亟待解决的关键议题。 ####
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
深度探索人工智能中的自然语言处理技术#### 一、
【10月更文挑战第28天】 本文旨在深入剖析人工智能领域中的自然语言处理(NLP)技术,探讨其发展历程、核心算法、应用现状及未来趋势。通过详尽的技术解读与实例分析,揭示NLP在智能交互、信息检索、内容理解等方面的变革性作用,为读者提供一幅NLP技术的全景图。 #### 二、
112 1
|
28天前
|
机器学习/深度学习 人工智能 自然语言处理
深入探讨人工智能中的深度学习技术##
在本文中,我们将深入探讨深度学习技术的原理、应用以及未来的发展趋势。通过分析神经网络的基本结构和工作原理,揭示深度学习如何在图像识别、自然语言处理等领域取得突破性进展。同时,我们还将讨论当前面临的挑战和未来的研究方向,为读者提供全面的技术洞察。 ##
|
28天前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与未来医疗:AI技术在疾病诊断中的应用前景####
本文探讨了人工智能(AI)在现代医疗领域,尤其是疾病诊断方面的应用潜力和前景。随着技术的不断进步,AI正逐渐改变传统医疗模式,提高诊断的准确性和效率。通过分析当前的技术趋势、具体案例以及面临的挑战,本文旨在为读者提供一个全面的视角,理解AI如何塑造未来医疗的面貌。 ####
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能的无限可能:技术前沿与应用实践
【10月更文挑战第23天】探索人工智能的无限可能:技术前沿与应用实践
|
1月前
|
人工智能 算法 自动驾驶
人工智能的伦理困境:技术发展与社会责任的平衡
在人工智能(AI)技术飞速发展的今天,我们面临着一个前所未有的伦理困境。本文将探讨AI技术带来的挑战,以及如何在技术创新与社会责任之间找到平衡点。我们将从隐私保护、就业影响、算法偏见等方面进行分析,并提出相应的解决方案。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能:从基础到应用的技术之旅
【10月更文挑战第23天】探索人工智能:从基础到应用的技术之旅