多线程学习之线程池

简介: 多线程学习之线程池

线程状态

线程状态 具体含义
NEW 一个尚未启动的线程的状态。也称之为初始、开始状态。线程刚被创建,但是并未启动。还没调用start方法。MyThread t = new MyThread()只有线程对象,没有线程特征。
RUNNABLE 当我们调用线程对象的start方法,那么此时线程对象进入了RUNNABLE状态。那么此时才是真正的在JVM进程中创建了一个线程,线程一经启动并不是立即得到执行,线程的运行与否要听令与CPU的调度,那么我们把这个中间状态称之为可执行状态(RUNNABLE)也就是说它具备执行的资格,但是并没有真正的执行起来而是在等待CPU的度。
BLOCKED 当一个线程试图获取一个对象锁,而该对象锁被其他的线程持有,则该线程进入Blocked状态;当该线程持有锁时,该线程将变成Runnable状态。
WAITING 一个正在等待的线程的状态。也称之为等待状态。造成线程等待的原因有两种,分别是调用Object.wait()、join()方法。处于等待状态的线程,正在等待其他线程去执行一个特定的操作。例如:因为wait()而等待的线程正在等待另一个线程去调用notify()或notifyAll();一个因为join()而等待的线程正在等待另一个线程结束。
TIMED_WAITING 一个在限定时间内等待的线程的状态。也称之为限时等待状态。造成线程限时等待状态的原因有三种,分别是:Thread.sleep(long),Object.wait(long)、join(long)。
TERMINATED 一个完全运行完成的线程的状态。也称之为终止状态、结束状态

线程池基本原理和设计思想

基本原理:

线程池可以看做成一个池子,在该池子中存储很多个线程。

线程池存在的意义:

系统创建一个线程涉及到与操作系统交互因此成本是比较高的,当程序中需要创建大量生存期很短暂的线程时,频繁的创建和销毁线程对系统的资源消耗有可能大于业务处理是对系统资源的消耗。针对这一种情况,为了提高性能,我们就可以采用线程池。线程池在启动的时,会创建大量空闲线程,当我们向线程池提交任务的时,线程池就会启动一个线程来执行该任务。等待任务执行完毕以后,线程并不会死亡,而是再次返回到线程池中称为空闲状态。等待下一次任务的执行。

设计思想:

  1. 准备一个任务容器
  2. 一次性启动多个(2个)消费者线程
  3. 刚开始任务容器是空的,所以线程都在wait
  4. 直到一个外部线程向这个任务容器中扔了一个"任务",就会有一个消费者线程被唤醒
  5. 这个消费者线程取出"任务",并且执行这个任务,执行完毕后,继续等待下一次任务的到来

方法:

Executors --- 可以帮助我们创建线程池对象

ExecutorService --- 可以帮助我们控制线程池

创建线程池-Executors默认线程池

创建一个默认的线程池

/**
 * @Author:kkoneone11
 * @name:MyThreadPoolDemo
 * @Date:2023/8/28 9:30
 */
public class MyThreadPoolDemo {
    public static void main(String[] args) {
        ExecutorService executorService = Executors.newCachedThreadPool();
        executorService.submit(() -> {
            System.out.println(Thread.currentThread().getName() + "在执行");
        });
        executorService.submit(() -> {
            System.out.println(Thread.currentThread().getName() + "在执行");
        });
        executorService.shutdown();
    }
}

创建线程池-Executors创建指定上限的线程池

创建一个指定的最多线程数量的线程池

public class MyThreadPoolDemo2 {
    public static void main(String[] args) {
        //参数不是初始值而是最大值
        ExecutorService executorService = Executors.newFixedThreadPool(10);
        ThreadPoolExecutor pool = (ThreadPoolExecutor) executorService;
        System.out.println(pool.getPoolSize());//0
        executorService.submit(()->{
            System.out.println(Thread.currentThread().getName() + "在执行");
        });
        executorService.submit(()->{
            System.out.println(Thread.currentThread().getName() + "在执行");
        });
        System.out.println(pool.getPoolSize());//2
//        executorService.shutdown();
    }
}

线程池参数

ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(核心线程数量,最大线程数量,空闲线程最大存活时间,任务队列,创建线程工厂,任务的拒绝策略);

public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory,
                              RejectedExecutionHandler handler)
corePoolSize:   核心线程的最大值,不能小于0
maximumPoolSize:最大线程数,不能小于等于0,maximumPoolSize >= corePoolSize
keepAliveTime:  空闲线程最大存活时间,不能小于0
unit:           时间单位
workQueue:      任务队列,不能为null
threadFactory:  创建线程工厂,不能为null      
handler:        任务的拒绝策略,不能为null

非默认任务拒绝策略

RejectedExecutionHandler是jdk提供的一个任务拒绝策略接口,它下面存在4个子类

  • ThreadPoolExecutor.AbortPolicy:             丢弃任务并抛出RejectedExecutionException异常。是默认的策略。
  • ThreadPoolExecutor.DiscardPolicy:            丢弃任务,但是不抛出异常 这是不推荐的做法。
  • ThreadPoolExecutor.DiscardOldestPolicy:    抛弃队列中等待最久的任务 然后把当前任务加入队列中。
  • ThreadPoolExecutor.CallerRunsPolicy:        调用任务的run()方法绕过线程池直接执行。

注意:明确线程池对多可执行的任务数 = 任务容器容量 + 最大线程数

ThreadPoolExecutor.AbortPolicy 实例1:

public class MyThreadPoolDemo {
    public static void main(String[] args) {
        /*
        * 核心线程数量为1 , 最大线程池数量为3, 任务容器的容量为1 ,空闲线程的最大存在时间为20s
         */
        ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(1, 3, 20,
                TimeUnit.SECONDS, new ArrayBlockingQueue<>(1), Executors.defaultThreadFactory(),
                new ThreadPoolExecutor.AbortPolicy());
        // 提交5个任务,而该线程池最多可以处理4个任务,当我们使用AbortPolicy这个任务处理策略的时候,就会抛出异常
        for(int x = 0; x<5; x++){
            threadPoolExecutor.submit(()->{
                System.out.println(Thread.currentThread().getName() +"---》正在执行");
            });
        }
    }
}

有一个任务被抛弃且抛出异常

ThreadPoolExecutor.DiscardPolicy  实例2:

public class ThreadPoolExecutorDemo {
    public static void main(String[] args) {
        /**
         * 核心线程数量为1 , 最大线程池数量为3, 任务容器的容量为1 ,空闲线程的最大存在时间为20s
         */
        ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(1 , 3 , 20 , TimeUnit.SECONDS ,
                new ArrayBlockingQueue<>(1) , Executors.defaultThreadFactory() , new ThreadPoolExecutor.DiscardPolicy()) ;
        // 提交5个任务,而该线程池最多可以处理4个任务,当我们使用DiscardPolicy这个任务处理策略的时候,控制台不会报错
        for(int x = 0 ; x < 5 ; x++) {
            threadPoolExecutor.submit(() -> {
                System.out.println(Thread.currentThread().getName() + "---->> 执行了任务");
            });
        }
    }
}

丢弃了一个任务但没有报错

 ThreadPoolExecutor.DiscardOldestPolicy 实例3:

public class ThreadPoolExecutorDemo {
    public static void main(String[] args) {
        /**
         * 核心线程数量为1 , 最大线程池数量为3, 任务容器的容量为1 ,空闲线程的最大存在时间为20s
         */
        ThreadPoolExecutor threadPoolExecutor;
        threadPoolExecutor = new ThreadPoolExecutor(1 , 3 , 20 , TimeUnit.SECONDS ,
                new ArrayBlockingQueue<>(1) , Executors.defaultThreadFactory() , new ThreadPoolExecutor.DiscardOldestPolicy());
        // 提交5个任务
        for(int x = 0 ; x < 5 ; x++) {
            // 定义一个变量,来指定指定当前执行的任务;这个变量需要被final修饰
            final int y = x ;
            threadPoolExecutor.submit(() -> {
                System.out.println(Thread.currentThread().getName() + "---->> 执行了任务" + y);
            });     
        }
    }
}

ThreadPoolExecutor.CallerRunsPolicy 实例4:

public class MyThreadPoolDemo {
    public static void main(String[] args) {
        /**
         * 核心线程数量为1 , 最大线程池数量为3, 任务容器的容量为1 ,空闲线程的最大存在时间为20s
         */
        ThreadPoolExecutor threadPoolExecutor;
        threadPoolExecutor = new ThreadPoolExecutor(1 , 3 , 20 , TimeUnit.SECONDS ,
                new ArrayBlockingQueue<>(1) , Executors.defaultThreadFactory() , new ThreadPoolExecutor.CallerRunsPolicy());
        // 提交5个任务
        for(int x = 0 ; x < 5 ; x++) {
            threadPoolExecutor.submit(() -> {
                System.out.println(Thread.currentThread().getName() + "---->> 执行了任务");
            });
        }
    }
}

目录
相关文章
|
2月前
|
Prometheus 监控 Cloud Native
JAVA线程池监控以及动态调整线程池
【10月更文挑战第22天】在 Java 中,线程池的监控和动态调整是非常重要的,它可以帮助我们更好地管理系统资源,提高应用的性能和稳定性。
193 64
|
11天前
|
NoSQL Redis
单线程传奇Redis,为何引入多线程?
Redis 4.0 引入多线程支持,主要用于后台对象删除、处理阻塞命令和网络 I/O 等操作,以提高并发性和性能。尽管如此,Redis 仍保留单线程执行模型处理客户端请求,确保高效性和简单性。多线程仅用于优化后台任务,如异步删除过期对象和分担读写操作,从而提升整体性能。
35 1
|
2月前
|
监控 安全 Java
在 Java 中使用线程池监控以及动态调整线程池时需要注意什么?
【10月更文挑战第22天】在进行线程池的监控和动态调整时,要综合考虑多方面的因素,谨慎操作,以确保线程池能够高效、稳定地运行,满足业务的需求。
120 38
|
2月前
|
Java
.如何根据 CPU 核心数设计线程池线程数量
IO 密集型:核心数*2 计算密集型: 核心数+1 为什么加 1?即使当计算密集型的线程偶尔由于缺失故障或者其他原因而暂停时,这个额外的线程也能确保 CPU 的时钟周期不会被浪费。
62 4
|
2月前
|
Java
线程池内部机制:线程的保活与回收策略
【10月更文挑战第24天】 线程池是现代并发编程中管理线程资源的一种高效机制。它不仅能够复用线程,减少创建和销毁线程的开销,还能有效控制并发线程的数量,提高系统资源的利用率。本文将深入探讨线程池中线程的保活和回收机制,帮助你更好地理解和使用线程池。
96 2
|
2月前
|
Prometheus 监控 Cloud Native
在 Java 中,如何使用线程池监控以及动态调整线程池?
【10月更文挑战第22天】线程池的监控和动态调整是一项重要的任务,需要我们结合具体的应用场景和需求,选择合适的方法和策略,以确保线程池始终处于最优状态,提高系统的性能和稳定性。
351 2
|
3月前
|
Java 开发者
在Java多线程编程中,创建线程的方法有两种:继承Thread类和实现Runnable接口
【10月更文挑战第20天】在Java多线程编程中,创建线程的方法有两种:继承Thread类和实现Runnable接口。本文揭示了这两种方式的微妙差异和潜在陷阱,帮助你更好地理解和选择适合项目需求的线程创建方式。
41 3
|
3月前
|
Java 开发者
在Java多线程编程中,选择合适的线程创建方法至关重要
【10月更文挑战第20天】在Java多线程编程中,选择合适的线程创建方法至关重要。本文通过案例分析,探讨了继承Thread类和实现Runnable接口两种方法的优缺点及适用场景,帮助开发者做出明智的选择。
28 2
|
3月前
|
Java
Java中多线程编程的基本概念和创建线程的两种主要方式:继承Thread类和实现Runnable接口
【10月更文挑战第20天】《JAVA多线程深度解析:线程的创建之路》介绍了Java中多线程编程的基本概念和创建线程的两种主要方式:继承Thread类和实现Runnable接口。文章详细讲解了每种方式的实现方法、优缺点及适用场景,帮助读者更好地理解和掌握多线程编程技术,为复杂任务的高效处理奠定基础。
45 2
|
2月前
|
数据采集 Java Python
爬取小说资源的Python实践:从单线程到多线程的效率飞跃
本文介绍了一种使用Python从笔趣阁网站爬取小说内容的方法,并通过引入多线程技术大幅提高了下载效率。文章首先概述了环境准备,包括所需安装的库,然后详细描述了爬虫程序的设计与实现过程,包括发送HTTP请求、解析HTML文档、提取章节链接及多线程下载等步骤。最后,强调了性能优化的重要性,并提醒读者遵守相关法律法规。
69 0